
Kyuubi
Release 1.3.0

Kent Yao

Nov 23, 2021

USAGE GUIDE

1 Multi-tenancy 3

2 Ease of Use 5

3 Run Anywhere 7

4 High Performance 9

5 Authentication & Authorization 11

6 High Availability 13
6.1 Quick Start . 13
6.2 Deploying Kyuubi . 51
6.3 Kyuubi Security Overview . 82
6.4 Client Documentation . 87
6.5 Integrations . 89
6.6 Monitoring . 93
6.7 SQL References . 106
6.8 Tools . 111
6.9 Overview . 114
6.10 Develop Tools . 126
6.11 Community . 133
6.12 Appendixes . 141

i

ii

Kyuubi, Release 1.3.0

Kyuubi™ is a unified multi-tenant JDBC interface for large-scale data processing and analytics, built on top of Apache
Spark™.

In general, the complete ecosystem of Kyuubi falls into the hierarchies shown in the above figure, with each layer
loosely coupled to the other.

For example, you can use Kyuubi, Spark and Apache Iceberg to build and manage Data Lake with pure SQL for both
data processing e.g. ETL, and analytics e.g. BI. All workloads can be done on one platform, using one copy of data,
with one SQL interface.

Kyuubi provides the following features:

USAGE GUIDE 1

http://spark.apache.org/
http://spark.apache.org/
https://iceberg.apache.org/

Kyuubi, Release 1.3.0

2 USAGE GUIDE

CHAPTER

ONE

MULTI-TENANCY

Kyuubi supports the end-to-end multi-tenancy, and this is why we want to create this project despite that the Spark
Thrift JDBC/ODBC server already exists.

1. Supports multi-client concurrency and authentication

2. Supports one Spark application per account(SPA).

3. Supports QUEUE/NAMESPACE Access Control Lists (ACL)

4. Supports metadata & data Access Control Lists

Users who have valid accounts could use all kinds of client tools, e.g. Hive Beeline, HUE, DBeaver, SQuirreL SQL
Client, etc, to operate with Kyuubi server concurrently.

The SPA policy makes sure 1) a user account can only get computing resource with managed ACLs, e.g. Queue
Access Control Lists, from cluster managers, e.g. Apache Hadoop YARN, Kubernetes (K8s) to create the Spark
application; 2) a user account can only access data and metadata from a storage system, e.g. Apache Hadoop HDFS,
with permissions.

3

http://spark.apache.org/docs/latest/sql-distributed-sql-engine.html#running-the-thrift-jdbcodbc-server
https://gethue.com/
https://dbeaver.io/
http://squirrel-sql.sourceforge.net/
http://squirrel-sql.sourceforge.net/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Queue_Access_Control_Lists
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Queue_Access_Control_Lists
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Kyuubi, Release 1.3.0

4 Chapter 1. Multi-tenancy

CHAPTER

TWO

EASE OF USE

You only need to be familiar with Structured Query Language (SQL) and Java Database Connectivity (JDBC) to
handle massive data. It helps you focus on the design and implementation of your business system.

5

Kyuubi, Release 1.3.0

6 Chapter 2. Ease of Use

CHAPTER

THREE

RUN ANYWHERE

Kyuubi can submit Spark applications to all supported cluster managers, including YARN, Mesos, Kubernetes, Stan-
dalone, and local.

The SPA policy also make it possible for you to launch different applications against different cluster managers.

7

Kyuubi, Release 1.3.0

8 Chapter 3. Run Anywhere

CHAPTER

FOUR

HIGH PERFORMANCE

Kyuubi is built on the Apache Spark, a lightning-fast unified analytics engine.

• Concurrent execution: multiple Spark applications work together

• Quick response: long-running Spark applications without startup cost

• Optimal execution plan: fully supports Spark SQL Catalyst Optimizer,

9

Kyuubi, Release 1.3.0

10 Chapter 4. High Performance

CHAPTER

FIVE

AUTHENTICATION & AUTHORIZATION

With strong authentication and fine-grained column/row level authorization, Kyuubi keeps your system and data se-
cure.

11

Kyuubi, Release 1.3.0

12 Chapter 5. Authentication & Authorization

CHAPTER

SIX

HIGH AVAILABILITY

Kyuubi provides both high availability and load balancing solutions based on Zookeeper.

6.1 Quick Start

In this section, you will learn how to setup and interact with kyuubi quickly.

6.1.1 Getting Started with Apache Kyuubi

Getting Kyuubi

Currently, Apache Kyuubi maintains all its releases on our official website. You can get the most recent stable release
of Apache Kyuubi here:

Download

13

https://kyuubi.apache.org/releases.html

Kyuubi, Release 1.3.0

Requirements

These are essential components required for Kyuubi to startup. For quick start deployment, the only thing you need is
JAVA_HOME and SPARK_HOME being correctly set. The Kyuubi release package you downloaded or built contains
the rest prerequisites inside already.

Additionally, if you want to work with other Spark compatible systems or plugins, you only need to take care of them
as using them with regular Spark applications. For example, you can run Spark SQL engines created by the Kyuubi on
any cluster manager, including YARN, Kubernetes, Mesos, e.t.c. . . Or, you can manipulate data from different data
sources with the Spark Datasource API, e.g. Delta Lake, Apache Hudi, Apache Iceberg, Apache Kudu and e.t.c. . .

Installation

To install Kyuubi, you need to unpack the tarball. For example,

tar zxf apache-kyuubi-1.3.1-incubating-bin.tgz

This will result in the creation of a subdirectory named apache-kyuubi-1.3.1-incubating-bin shown
below,

apache-kyuubi-1.3.1-incubating-bin
DISCLAIMER
LICENSE
NOTICE
RELEASE
bin
conf

| kyuubi-defaults.conf.template
kyuubi-env.sh.template
log4j.properties.template

docker
Dockerfile
kyuubi-configmap.yaml
kyuubi-pod.yaml
kyuubi-service.yaml

extension
kyuubi-extension-spark-3-1_2.12-1.3.1-incubating.jar

externals
engines

jars
licenses
logs
pid
work

From top to bottom are:

• DISCLAIMER: the disclaimer made by Apache Kyuubi Community as a project still in ASF Incubator.

• LICENSE: the APACHE LICENSE, VERSION 2.0 we claim to obey.

• RELEASE: the build information of this package.

• NOTICE: the notice made by Apache Kyuubi Community about its project and dependencies.

• bin: the entry of the Kyuubi server with kyuubi as the startup script.

• conf: all the defaults used by Kyuubi Server itself or creating a session with Spark applications.

• externals

14 Chapter 6. High Availability

https://www.apache.org/licenses/LICENSE-2.0

Kyuubi, Release 1.3.0

– engines: contains all kinds of SQL engines that we support, e.g. Apache Spark, Apache Flink(coming
soon).

• licenses: a bunch of licenses included.

• jars: packages needed by the Kyuubi server.

• logs: where the logs of the Kyuubi server locates.

• pid: stores the PID file of the Kyuubi server instance.

• work: the root of the working directories of all the forked sub-processes, a.k.a. SQL engines.

Running Kyuubi

As mentioned above, for a quick start deployment, then only you need to be sure is that your java runtime environment
and SPARK_HOME are correct.

Setup JAVA

You can either set it system-widely, e.g. in the .bashrc file.

java -version
java version "1.8.0_251"
Java(TM) SE Runtime Environment (build 1.8.0_251-b08)
Java HotSpot(TM) 64-Bit Server VM (build 25.251-b08, mixed mode)

Or, export JAVA_HOME=/path/to/java in the local os session.

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-11.0.5.jdk/Contents/Home
java -version
java version "11.0.5" 2019-10-15 LTS
Java(TM) SE Runtime Environment 18.9 (build 11.0.5+10-LTS)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.5+10-LTS, mixed mode)

The recommended place to set JAVA_HOME is $KYUUBI_HOME/conf/kyuubi-env.sh, as the ways above are
too flaky. The JAVA_HOME in $KYUUBI_HOME/conf/kyuubi-env.sh will take others’ precedence.

Setup Spark

Similar to JAVA_HOME, you can also set SPARK_HOME in different ways. However, we recommend setting it in
$KYUUBI_HOME/conf/kyuubi-env.sh too.

For example,

SPARK_HOME=~/Downloads/spark-3.2.0-bin-hadoop3.2

6.1. Quick Start 15

Kyuubi, Release 1.3.0

Starting Kyuubi

bin/kyuubi start

It will print all essential environment variables on the screen during the server starts, and you may check whether they
are expected.

Starting Kyuubi Server from /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-
→˓kyuubi-1.3.1-incubating-bin
Warn: Not find kyuubi environment file /Users/kentyao/svn-kyuubi/v1.3.1-incubating-
→˓rc0/apache-kyuubi-1.3.1-incubating-bin/conf/kyuubi-env.sh, using default ones...
JAVA_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_251.jdk/Contents/Home
KYUUBI_HOME: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin
KYUUBI_CONF_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/conf
KYUUBI_LOG_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/logs
KYUUBI_PID_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/pid
KYUUBI_WORK_DIR_ROOT: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.
→˓3.1-incubating-bin/work
SPARK_HOME: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2
SPARK_CONF_DIR: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2/conf
HADOOP_CONF_DIR:
Starting org.apache.kyuubi.server.KyuubiServer, logging to /Users/kentyao/svn-kyuubi/
→˓v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/logs/kyuubi-kentyao-org.
→˓apache.kyuubi.server.KyuubiServer-hulk.local.out
Welcome to

__ __ __
/\ \/\ \ /\ \ __
\ \ \/'/' __ __ __ __ __ __\ \ ____/_\
\ \ , < /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
\ \ \\`\\ \ _\ \ \ _\ \ \ _\ \\ \ \L\ \ \ \
\ _\ _\/`____ \ ____/\ ____/ \ _,__/\ _\
\/_/\/_/`/___/> \/___/ \/___/ \/___/ \/_/

/___/
\/__/

If all goes well, this will result in the creation of the Kyuubi server instance with a PID stored in $KYUUBI_HOME/
pid/kyuubi-<username>-org.apache.kyuubi.server.KyuubiServer.pid

Then, you can get the JDBC connection URL at the end of the log file, e.g.

ThriftFrontendService: Starting and exposing JDBC connection at: jdbc:hive2://
→˓localhost:10009/

If something goes wrong, you shall be able to find some clues in the log file too.

Alternatively, it can run in the foreground, with the logs and other output written to stdout/stderr. Both streams should
be captured if using a supervision system like supervisord.

bin/kyuubi run

16 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Using Hive Beeline

Kyuubi server is compatible with Apache Hive beeline, so you can use $SPARK_HOME/bin/beeline for testing.

Opening a Connection

The command below will tell the Kyuubi server to create a session with itself.

bin/beeline -u 'jdbc:hive2://localhost:10009/'
Connecting to jdbc:hive2://localhost:10009/
Connected to: Spark SQL (version 1.0.2)
Driver: Hive JDBC (version 2.3.7)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 2.3.7 by Apache Hive
0: jdbc:hive2://localhost:10009/>

In this case, the session will create for the user named ‘anonymous’.

Kyuubi will create a Spark SQL engine application using kyuubi-spark-sql-engine_2.12-<version>.
jar. It will cost awhile for the application to be ready before fully establishing the session. Otherwise, an existing
application will be reused, and the time cost here is negligible.

Similarly, you can create a session for another user(or principal, subject, and maybe something else you defined), e.g.
named kentyao,

bin/beeline -u 'jdbc:hive2://localhost:10009/' -n kentyao

The formerly created Spark application for user ‘anonymous’ will not be reused in this case, while a brand new
application will be submitted for user ‘kentyao’ instead.

Then, you can see 3 processes running in your local environment, including one KyuubiServer instance and 2
SparkSubmit instances as the SQL engines.

75730 Jps
70843 KyuubiServer
72566 SparkSubmit
75356 SparkSubmit

Execute Statements

If the beeline session is successfully connected, then you can run any query supported by Spark SQL now. For
example,

0: jdbc:hive2://10.242.189.214:2181/> select timestamp '2018-11-17';
2021-10-28 13:56:27.509 INFO operation.ExecuteStatement: Processing kent's
→˓query[1f619182-20ad-4733-995b-a5e43b80d998]: INITIALIZED_STATE -> PENDING_STATE,
→˓statement: select timestamp '2018-11-17'
2021-10-28 13:56:27.547 INFO operation.ExecuteStatement: Processing kent's
→˓query[1f619182-20ad-4733-995b-a5e43b80d998]: PENDING_STATE -> RUNNING_STATE,
→˓statement: select timestamp '2018-11-17'
2021-10-28 13:56:27.540 INFO operation.ExecuteStatement: Processing kent's
→˓query[a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: INITIALIZED_STATE -> PENDING_STATE,
→˓statement: select timestamp '2018-11-17'
2021-10-28 13:56:27.541 INFO operation.ExecuteStatement: Processing kent's
→˓query[a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: PENDING_STATE -> RUNNING_STATE,
→˓statement: select timestamp '2018-11-17'

(continues on next page)

6.1. Quick Start 17

Kyuubi, Release 1.3.0

(continued from previous page)

2021-10-28 13:56:27.543 INFO operation.ExecuteStatement:
Spark application name: kyuubi_USER_kent_7ad055d0-3eca-4b78-87e8-

→˓94b22f3bade9
application ID: local-1635400506190
application web UI: http://10.242.189.214:56774
master: local[*]
deploy mode: client
version: 3.2.0

Start time: 2021-10-28T13:55:05.528
User: kent

2021-10-28 13:56:27.604 INFO operation.ExecuteStatement: Processing kent's
→˓query[a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: RUNNING_STATE -> RUNNING_STATE,
→˓statement: select timestamp '2018-11-17'
2021-10-28 13:56:27.627 INFO codegen.CodeGenerator: Code generated in 6.696179 ms
2021-10-28 13:56:27.635 INFO spark.SparkContext: Starting job: collect at
→˓ExecuteStatement.scala:97
2021-10-28 13:56:27.639 INFO kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-
→˓be1e-19770af8ac4c]: Job 3 started with 1 stages, 1 active jobs running
2021-10-28 13:56:27.639 INFO kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-
→˓be1e-19770af8ac4c]: Stage 3 started with 1 tasks, 1 active stages running
2021-10-28 13:56:27.651 INFO scheduler.DAGScheduler: Job 3 finished: collect at
→˓ExecuteStatement.scala:97, took 0.016234 s
2021-10-28 13:56:27.653 INFO kyuubi.SQLOperationListener: Finished stage: Stage(3, 0);
→˓ Name: 'collect at ExecuteStatement.scala:97'; Status: succeeded; numTasks: 1;
→˓Took: 13 msec
2021-10-28 13:56:27.663 INFO scheduler.StatsReportListener: task runtime:(count: 1,
→˓mean: 8.000000, stdev: 0.000000, max: 8.000000, min: 8.000000)
2021-10-28 13:56:27.664 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.664 INFO scheduler.StatsReportListener: 8.0 ms 8.0
→˓ms 8.0 ms 8.0 ms 8.0 ms 8.0 ms 8.0 ms 8.0
→˓ms 8.0 ms
2021-10-28 13:56:27.665 INFO scheduler.StatsReportListener: shuffle bytes
→˓written:(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-28 13:56:27.665 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.665 INFO scheduler.StatsReportListener: 0.0 B 0.0
→˓B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0
→˓B 0.0 B
2021-10-28 13:56:27.666 INFO scheduler.StatsReportListener: fetch wait time:(count: 1,
→˓ mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-28 13:56:27.666 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.666 INFO scheduler.StatsReportListener: 0.0 ms 0.0
→˓ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0
→˓ms 0.0 ms
2021-10-28 13:56:27.667 INFO scheduler.StatsReportListener: remote bytes read:(count:
→˓1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-28 13:56:27.667 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.667 INFO scheduler.StatsReportListener: 0.0 B 0.0
→˓B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0
→˓B 0.0 B
2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: task result size:(count:
→˓1, mean: 1402.000000, stdev: 0.000000, max: 1402.000000, min: 1402.000000)
2021-10-28 13:56:27.668 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%

(continues on next page)

18 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

2021-10-28 13:56:27.669 INFO scheduler.StatsReportListener: 1402.0
→˓B 1402.0 B 1402.0 B 1402.0 B 1402.0 B 1402.0
→˓B 1402.0 B 1402.0 B 1402.0 B
2021-10-28 13:56:27.669 INFO codegen.CodeGenerator: Code generated in 8.815996 ms
2021-10-28 13:56:27.672 INFO scheduler.StatsReportListener: executor (non-fetch) time
→˓pct: (count: 1, mean: 12.500000, stdev: 0.000000, max: 12.500000, min: 12.500000)
2021-10-28 13:56:27.672 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.672 INFO scheduler.StatsReportListener: 13 % 13
→˓% 13 % 13 % 13 % 13 % 13 % 13 % 13
→˓%
2021-10-28 13:56:27.673 INFO scheduler.StatsReportListener: fetch wait time pct:
→˓(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-28 13:56:27.673 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.673 INFO scheduler.StatsReportListener: 0 % 0
→˓% 0 % 0 % 0 % 0 % 0 % 0 % 0
→˓%
2021-10-28 13:56:27.674 INFO scheduler.StatsReportListener: other time pct: (count: 1,
→˓ mean: 87.500000, stdev: 0.000000, max: 87.500000, min: 87.500000)
2021-10-28 13:56:27.674 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-28 13:56:27.674 INFO scheduler.StatsReportListener: 88 % 88
→˓% 88 % 88 % 88 % 88 % 88 % 88 % 88
→˓%
2021-10-28 13:56:27.674 INFO kyuubi.SQLOperationListener: Query [a46ca504-fe3a-4dfb-
→˓be1e-19770af8ac4c]: Job 3 succeeded, 0 active jobs running
2021-10-28 13:56:27.744 INFO operation.ExecuteStatement: Processing kent's
→˓query[a46ca504-fe3a-4dfb-be1e-19770af8ac4c]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: select timestamp '2018-11-17', time taken: 0.202 seconds
2021-10-28 13:56:27.784 INFO operation.ExecuteStatement: Query[1f619182-20ad-4733-
→˓995b-a5e43b80d998] in FINISHED_STATE
2021-10-28 13:56:27.784 INFO operation.ExecuteStatement: Processing kent's
→˓query[1f619182-20ad-4733-995b-a5e43b80d998]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: select timestamp '2018-11-17', time taken: 0.237 seconds
+----------------------------------+
| TIMESTAMP '2018-11-17 00:00:00' |
+----------------------------------+
| 2018-11-17 00:00:00.0 |
+----------------------------------+
1 row selected (0.404 seconds)

As shown in the above case, you can retrieve all the operation logs, the result schema, and the result to your client-side
in the beeline console.

Additionally, some useful information about the background Spark SQL application associated with this connection is
also printed in the operation log. For example, you can get the Spark web UI from the log for debugging or tuning.

6.1. Quick Start 19

Kyuubi, Release 1.3.0

Closing a Connection

Close the session between beeline and Kyuubi server by executing !quit, for example,

0: jdbc:hive2://localhost:10009/> !quit
Closing: 0: jdbc:hive2://localhost:10009/

Stopping Kyuubi

Stop Kyuubi by running the following in the $KYUUBI_HOME directory:

bin/kyuubi stop

And then, you will see the KyuubiServer waving goodbye to you.

Stopping org.apache.kyuubi.server.KyuubiServer
__ __ __

/\ \/\ \ /\ \ __
\ \ \/'/' __ __ __ __ __ __\ \ ____/_\
\ \ , < /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
\ \ \\`\\ \ _\ \ \ _\ \ \ _\ \\ \ \L\ \ \ \
\ _\ _\/`____ \ ____/\ ____/ \ _,__/\ _\
\/_/\/_/`/___/> \/___/ \/___/ \/___/ \/_/

/___/
\/__/

Bye!

The KyuubiServer instance will be stopped immediately while the SQL engine’s application will still be alive for
a while.

If you start Kyuubi again before the SQL engine application terminates itself, it will reconnect to the newly created
KyuubiServer instance.

20 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.1.2 Getting Started With Kyuubi on kubernetes

Running kyuubi with helm

Helm is the package manager for Kubernetesit can be used to find, share, and use software built for Kubernetes.

Get helm and Install

Please go to Install Helm page to get and install an appropriate release version for yourself.

Get Kyuubi Started

[Optional] Create namespace on kubernetes

cretate ns kyuubi

Get kyuubi started

helm install kyuubi-helm ${KYUUBI_HOME}/docker/helm -n ${namespace_name}

It will print variables and the way to get kyuubi expose ip and port.

NAME: kyuubi-helm
LAST DEPLOYED: Wed Oct 20 15:22:47 2021
NAMESPACE: kyuubi
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Get kyuubi expose URL by running these commands:

export NODE_PORT=$(kubectl get --namespace kyuubi -o jsonpath="{.spec.ports[0].
→˓nodePort}" services kyuubi-helm-nodeport)
export NODE_IP=$(kubectl get nodes --namespace kyuubi -o jsonpath="{.items[0].

→˓status.addresses[0].address}")
echo $NODE_IP:$NODE_PORT

Using hive beeline

Using Hive Beeline to opening a connection.

6.1. Quick Start 21

https://helm.sh/
https://helm.sh/docs/intro/install/
https://kyuubi.apache.org/docs/latest/quick_start/quick_start.html#using-hive-beeline

Kyuubi, Release 1.3.0

Remove kyuubi

helm uninstall kyuubi-helm -n ${namespace_name}

Edit server config

Modify values.yaml under ${KYUUBI_HOME}/docker/helm:

Kyuubi server numbers
replicaCount: 2

image:
repository: apache/kyuubi
pullPolicy: Always
Overrides the image tag whose default is the chart appVersion.
tag: "master-snapshot"

server:
bind:
host: 0.0.0.0
port: 10009

conf:
mountPath: /opt/kyuubi/conf

service:
type: NodePort
The default port limit of kubernetes is 30000-32767
to change:
vim kube-apiserver.yaml (usually under path: /etc/kubernetes/manifests/)
add or change line 'service-node-port-range=1-32767' under kube-apiserver
port: 30009

Get server log

List all server pods:

kubectl get po -n ${namespace_name}

The server pods will print:

NAME READY STATUS RESTARTS AGE
kyuubi-server-585d8944c5-m7j5s 1/1 Running 0 30m
kyuubi-server-32sdsa1245-2d2sj 1/1 Running 0 30m

then, use pod name to get logs:

kubectl -n ${namespace_name} logs kyuubi-server-585d8944c5-m7j5s

22 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.1.3 Getting Started With Kyuubi and DBeaver

What is DBeaver

DBeaver is a free multi-platform database tool for developers, database administrators, analysts and all people who
need to work with databases. Supports all popular databases as well as our Kyuubi.

Get to know more About DBeaver.

Preparation

Get DBeaver and Install

Please go to Download DBeaver page to get and install an appropriate release version for yourself.

Get Kyuubi Started

Get the server Started first before your try DBeaver with Kyuubi.

Welcome to
__ __ __

/\ \/\ \ /\ \ __
\ \ \/'/' __ __ __ __ __ __\ \ ____/_\
\ \ , < /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
\ \ \\`\\ \ _\ \ \ _\ \ \ _\ \\ \ \L\ \ \ \
\ _\ _\/`____ \ ____/\ ____/ \ _,__/\ _\
\/_/\/_/`/___/> \/___/ \/___/ \/___/ \/_/

/___/
\/__/

For debugging purpose, you can tail -f to track the server log like:

$ tail -f /Users/kentyao/Downloads/kyuubi/kyuubi-1.3.0-incubating-bin/logs/kyuubi-
→˓kentyao-org.apache.kyuubi.server.KyuubiServer-hulk.local.out
2021-01-16 03:27:35.449 INFO server.NIOServerCnxnFactory: Accepted socket connection
→˓from /127.0.0.1:65320
2021-01-16 03:27:35.453 INFO server.ZooKeeperServer: Client attempting to establish
→˓new session at /127.0.0.1:65320
2021-01-16 03:27:35.455 INFO persistence.FileTxnLog: Creating new log file: log.1
2021-01-16 03:27:35.491 INFO server.ZooKeeperServer: Established session
→˓0x177078469840000 with negotiated timeout 60000 for client /127.0.0.1:65320
2021-01-16 03:27:35.492 INFO zookeeper.ClientCnxn: Session establishment complete on
→˓server 127.0.0.1/127.0.0.1:2181, sessionid = 0x177078469840000, negotiated timeout
→˓= 60000

(continues on next page)

6.1. Quick Start 23

https://dbeaver.io/
https://github.com/dbeaver/dbeaver/wiki
https://dbeaver.io/download/

Kyuubi, Release 1.3.0

(continued from previous page)

2021-01-16 03:27:35.494 INFO state.ConnectionStateManager: State change: CONNECTED
2021-01-16 03:27:35.495 INFO client.ServiceDiscovery: Zookeeper client connection
→˓state changed to: CONNECTED
2021-01-16 03:27:36.516 INFO client.ServiceDiscovery: Created a /kyuubi/
→˓serviceUri=localhost:10009;version=1.0.2;sequence=0000000000 on ZooKeeper for
→˓KyuubiServer uri: localhost:10009
2021-01-16 03:27:36.516 INFO client.ServiceDiscovery: Service[ServiceDiscovery] is
→˓started.
2021-01-16 03:27:36.516 INFO server.KyuubiServer: Service[KyuubiServer] is started.

Configurations

Start DBeaver

If you have successfully installed DBeaver, just hit the button to launch it.

Select a database

Substantially, this step is to choose a JDBC Driver type to use later. We can choose Apache Hive or Apache Spark to
set up a driver for Kyuubi, because they are compatible with the same client.

24 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Tips: zoom up if the pic looks small

Click next. . .

6.1. Quick Start 25

Kyuubi, Release 1.3.0

Edit the Driver

We can set libraries that include the org.apache.hive.jdbc.HiveDriver and all of its dependencies.

26 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Tips: zoom

6.1. Quick Start 27

Kyuubi, Release 1.3.0

up if the pic looks small

Download/Update it. . . or,

28 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Tips: zoom

6.1. Quick Start 29

Kyuubi, Release 1.3.0

up if the pic looks small

We can configure it by adding a local folder which contains these jars.

Generic JDBC Connection Settings

To connect to Kyuubi, we should configure the right host and port that starts the server. By default, Kyuubi starts on
port 10009 on your localhost.

Tips: zoom up if the pic looks small

30 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Other settings

We also can name a recognizable title for this connection.

Tips: zoom up if the pic looks small

Interacting With Kyuubi server

Connections

First, we need to active the connection with Kyuubi server we created in the above steps.

Correspondingly, the server will help us start an engine, and we will be able to see a log like below,

2021-01-16 14:33:56.050 INFO session.KyuubiSessionImpl: Launching SQL engine:

Once the connection is set up, we shall be able to see the default catalog, databases(namespaces) as below.

6.1. Quick Start 31

Kyuubi, Release 1.3.0

Operations

Now, we can use the SQL editor to write queries to interact with Kyuubi server through the connection.

DESC NAMESPACE DEFAULT;

CREATE TABLE spark_catalog.`default`.SRC(KEY INT, VALUE STRING) USING PARQUET;
INSERT INTO TABLE spark_catalog.`default`.SRC VALUES (11215016, 'Kent Yao');

32 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Tips: zoom up if the pic looks small

SELECT KEY % 10 AS ID, SUBSTRING(VALUE, 1, 4) AS NAME FROM spark_catalog.`default`.
→˓SRC;

Tips: zoom up if the pic looks small

6.1. Quick Start 33

Kyuubi, Release 1.3.0

DROP TABLE spark_catalog.`default`.SRC;

One more case with TPCDS

After we create the TPCDS table in Kyuubi server side, we are able to get all the database objects, including catalogs,
databases, tables, and columns e.t.c.

34 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Tips: zoom up if

6.1. Quick Start 35

Kyuubi, Release 1.3.0

the pic looks small

Also, we can use the shortcut key to operating metadata and data, for example.

Tips: zoom up if the pic looks small

And we can write simple or complex SQL to manipulate data, for example, here is the query 41 generated by TPCDS
dsqgen tool.

SELECT DISTINCT (i_product_name)
FROM item i1
WHERE i_manufact_id BETWEEN 738 AND 738 + 40
AND (SELECT count(*) AS item_cnt

FROM item
WHERE (i_manufact = i1.i_manufact AND
((i_category = 'Women' AND
(i_color = 'powder' OR i_color = 'khaki') AND
(i_units = 'Ounce' OR i_units = 'Oz') AND
(i_size = 'medium' OR i_size = 'extra large')

) OR
(i_category = 'Women' AND

(i_color = 'brown' OR i_color = 'honeydew') AND
(i_units = 'Bunch' OR i_units = 'Ton') AND
(i_size = 'N/A' OR i_size = 'small')

) OR
(i_category = 'Men' AND

(i_color = 'floral' OR i_color = 'deep') AND
(i_units = 'N/A' OR i_units = 'Dozen') AND
(i_size = 'petite' OR i_size = 'large')

) OR
(i_category = 'Men' AND

(i_color = 'light' OR i_color = 'cornflower') AND
(continues on next page)

36 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

(i_units = 'Box' OR i_units = 'Pound') AND
(i_size = 'medium' OR i_size = 'extra large')

))) OR
(i_manufact = i1.i_manufact AND
((i_category = 'Women' AND
(i_color = 'midnight' OR i_color = 'snow') AND
(i_units = 'Pallet' OR i_units = 'Gross') AND
(i_size = 'medium' OR i_size = 'extra large')

) OR
(i_category = 'Women' AND
(i_color = 'cyan' OR i_color = 'papaya') AND
(i_units = 'Cup' OR i_units = 'Dram') AND
(i_size = 'N/A' OR i_size = 'small')

) OR
(i_category = 'Men' AND
(i_color = 'orange' OR i_color = 'frosted') AND
(i_units = 'Each' OR i_units = 'Tbl') AND
(i_size = 'petite' OR i_size = 'large')

) OR
(i_category = 'Men' AND

(i_color = 'forest' OR i_color = 'ghost') AND
(i_units = 'Lb' OR i_units = 'Bundle') AND
(i_size = 'medium' OR i_size = 'extra large')

)))) > 0
ORDER BY i_product_name
LIMIT 100

Tips: zoom up if the pic looks small

6.1. Quick Start 37

Kyuubi, Release 1.3.0

Epilogue

There are many other amazing features in both Kyuubi and DBeaver and here is just the tip of the iceberg. The rest is
for you to discover.

6.1.4 Getting Started With Hive Beeline

Getting Beeline

$ bin/beeline --help
Usage: java org.apache.hive.cli.beeline.BeeLine

-u <database url> the JDBC URL to connect to
-r reconnect to last saved connect url (in

→˓conjunction with !save)
-n <username> the username to connect as
-p <password> the password to connect as
-d <driver class> the driver class to use
-i <init file> script file for initialization
-e <query> query that should be executed
-f <exec file> script file that should be executed
-w (or) --password-file <password file> the password file to read password from
--hiveconf property=value Use value for given property
--hivevar name=value hive variable name and value

This is Hive specific settings in which variables
can be set at session level and referenced in Hive
commands or queries.

--property-file=<property-file> the file to read connection properties (url,
→˓driver, user, password) from

--color=[true/false] control whether color is used for display
--showHeader=[true/false] show column names in query results
--headerInterval=ROWS; the interval between which heades are displayed
--fastConnect=[true/false] skip building table/column list for tab-completion
--autoCommit=[true/false] enable/disable automatic transaction commit
--verbose=[true/false] show verbose error messages and debug info
--showWarnings=[true/false] display connection warnings
--showDbInPrompt=[true/false] display the current database name in the prompt
--showNestedErrs=[true/false] display nested errors
--numberFormat=[pattern] format numbers using DecimalFormat pattern
--force=[true/false] continue running script even after errors
--maxWidth=MAXWIDTH the maximum width of the terminal
--maxColumnWidth=MAXCOLWIDTH the maximum width to use when displaying columns
--silent=[true/false] be more silent
--autosave=[true/false] automatically save preferences
--outputformat=[table/vertical/csv2/tsv2/dsv/csv/tsv] format mode for result

→˓display
Note that csv, and tsv are deprecated - use csv2,

→˓tsv2 instead (continues on next page)

38 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

--incremental=[true/false] Defaults to false. When set to false, the entire
→˓result set

is fetched and buffered before being displayed,
→˓yielding optimal

display column sizing. When set to true, result
→˓rows are displayed

immediately as they are fetched, yielding lower
→˓latency and

memory usage at the price of extra display column
→˓padding.

Setting --incremental=true is recommended if you
→˓encounter an OutOfMemory

on the client side (due to the fetched result set
→˓size being large).

Only applicable if --outputformat=table.
--incrementalBufferRows=NUMROWS the number of rows to buffer when printing rows on

→˓stdout,
defaults to 1000; only applicable if --

→˓incremental=true
and --outputformat=table

--truncateTable=[true/false] truncate table column when it exceeds length
--delimiterForDSV=DELIMITER specify the delimiter for delimiter-separated

→˓values output format (default: |)
--isolation=LEVEL set the transaction isolation level
--nullemptystring=[true/false] set to true to get historic behavior of printing

→˓null as empty string
--maxHistoryRows=MAXHISTORYROWS The maximum number of rows to store beeline

→˓history.
--help display this message

Example:
1. Connect using simple authentication to HiveServer2 on localhost:10000
$ beeline -u jdbc:hive2://localhost:10000 username password

2. Connect using simple authentication to HiveServer2 on hs.local:10000 using -n
→˓for username and -p for password

$ beeline -n username -p password -u jdbc:hive2://hs2.local:10012

3. Connect using Kerberos authentication with hive/localhost@mydomain.com as
→˓HiveServer2 principal

$ beeline -u "jdbc:hive2://hs2.local:10013/default;principal=hive/
→˓localhost@mydomain.com"

4. Connect using SSL connection to HiveServer2 on localhost at 10000
$ beeline "jdbc:hive2://localhost:10000/default;ssl=true;sslTrustStore=/usr/local/

→˓truststore;trustStorePassword=mytruststorepassword"

5. Connect using LDAP authentication
$ beeline -u jdbc:hive2://hs2.local:10013/default <ldap-username> <ldap-password>

6.1. Quick Start 39

Kyuubi, Release 1.3.0

6.1.5 Getting Started With Hive JDBC

How to install JDBC driver

Kyuubi JDBC driver is fully compatible with the 2.3.* version of hive JDBC driver, so we reuse hive JDBC driver to
connect to Kyuubi server.

Add repository to your maven configuration file which may reside in $MAVEN_HOME/conf/settings.xml.

<repositories>
<repository>
<id>central maven repo</id>
<name>central maven repo https</name>
<url>https://repo.maven.apache.org/maven2</url>

</repository>
</repositories>

You can add below dependency to your pom.xml file in your application.

<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
<dependency>

<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.3.7</version>

</dependency>
<dependency>

<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<!-- keep consistent with the build hadoop version -->
<version>2.7.4</version>

</dependency>

Use JDBC driver with kerberos

The below java code is using a keytab file to login and connect to Kyuubi server by JDBC.

package org.apache.kyuubi.examples;

import java.io.IOException;
import java.security.PrivilegedExceptionAction;
import java.sql.*;

import org.apache.hadoop.security.UserGroupInformation;

public class JDBCTest {

(continues on next page)

40 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

private static String driverName = "org.apache.hive.jdbc.HiveDriver";
private static String kyuubiJdbcUrl = "jdbc:hive2://localhost:10009/default;";

public static void main(String[] args) throws ClassNotFoundException,
→˓SQLException {

String principal = args[0]; // kerberos principal
String keytab = args[1]; // keytab file location
Configuration configuration = new Configuration();
configuration.set(HADOOP_SECURITY_AUTHENTICATION, "kerberos");
UserGroupInformation.setConfiguration(configuration);
UserGroupInformation ugi = UserGroupInformation.

→˓loginUserFromKeytabAndReturnUGI(principal, keytab);

Class.forName(driverName);
Connection conn = ugi.doAs(new PrivilegedExceptionAction<Connection>(){

public Connection run() throws SQLException {
return DriverManager.getConnection(kyuubiJdbcUrl);

}
});
Statement st = conn.createStatement();
ResultSet res = st.executeQuery("show databases");
while (res.next()) {

System.out.println(res.getString(1));
}
res.close();
st.close();
conn.close();

}
}

6.1.6 Getting Started With Kyuubi and DataGrip

What is DataGrip

DataGrip is a multi-engine database environment released by JetBrains, supporting MySQL and PostgreSQL, Mi-
crosoft SQL Server and Oracle, Sybase, DB2, SQLite, HyperSQL, Apache Derby, and H2.

6.1. Quick Start 41

https://www.jetbrains.com/datagrip/

Kyuubi, Release 1.3.0

Preparation

Get DataGrip And Install

Please go to Download DataGrip to get and install an appropriate version for yourself.

Get Kyuubi Started

Get kyuubi server started before you try DataGrip with kyuubi.

For debugging purpose, you can use tail -f or tailf to track the server log.

Configurations

Start DataGrip

After you install DataGrip, just launch it.

Select Database

Substantially, this step is to choose a JDBC Driver type to use later. We can choose Apache Hive to set up a driver for
Kyuubi.

42 Chapter 6. High Availability

https://www.jetbrains.com/datagrip/download
https://kyuubi.apache.org/docs/latest/quick_start/quick_start.html

Kyuubi, Release 1.3.0

Datasource Driver

You should first download the missing driver files. Just click on the link below, DataGrip will download and install
those.

6.1. Quick Start 43

Kyuubi, Release 1.3.0

Generic JDBC Connection Settings

After install drivers, you should configure the right host and port which you can find in kyuubi server log. By default,
we use localhost and 10009 to configure.

Of course, you can fill other configs.

After generic configs, you can use test connection to test.

44 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Interacting With Kyuubi Server

Now, you can interact with Kyuubi server.

The left side of the photo is the table, and the right side of the photo is the console.

You can interact through the visual interface or code.

6.1. Quick Start 45

Kyuubi, Release 1.3.0

The End

There are many other amazing features in both Kyuubi and DataGrip and here is just the tip of the iceberg. The rest is
for you to discover.

6.1.7 Getting Started with Kyuubi and Cloudera Hue

What is Hue

Hue is an open source SQL Assistant for Databases & Data Warehouses.

46 Chapter 6. High Availability

https://gethue.com/

Kyuubi, Release 1.3.0

Preparation

Get Kyuubi Started

Get the server Started first before your try Hue with Kyuubi.

Welcome to
__ __ __

/\ \/\ \ /\ \ __
\ \ \/'/' __ __ __ __ __ __\ \ ____/_\
\ \ , < /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
\ \ \\`\\ \ _\ \ \ _\ \ \ _\ \\ \ \L\ \ \ \
\ _\ _\/`____ \ ____/\ ____/ \ _,__/\ _\
\/_/\/_/`/___/> \/___/ \/___/ \/___/ \/_/

/___/
\/__/

Run Hue in Docker

Here we demo running Kyuubi on macOS and Hue on Docker for Mac, there are several known limitations of network,
and you can find workarounds from here.

Configuration

1. Copy a configuration template from Hue Docker image.

docker run --rm gethue/hue:latest cat /usr/share/hue/desktop/conf/hue.ini > hue.ini

1. Modify the hue.ini

[beeswax]
Kyuubi 1.1.x support thrift version from 1 to 10
thrift_version=7
change to your username to avoid permissions issue for local test
auth_username=chengpan

[notebook]
[[interpreters]]
[[[sql]]]

name=SparkSQL
interface=hiveserver2

[spark]
Host of the Spark Thrift Server
For macOS users, use docker.for.mac.host.internal to access host network
sql_server_host=docker.for.mac.host.internal

Port of the Spark Thrift Server
sql_server_port=10009

other configurations
...

6.1. Quick Start 47

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds

Kyuubi, Release 1.3.0

Start Hue in Docker

docker run -p 8888:8888 -v $PWD/hue.ini:/usr/share/hue/desktop/conf/hue.ini gethue/
→˓hue:latest

Go http://localhost:8888/ and follow the guide to create an account.

Having fun with Hue and Kyuubi!

48 Chapter 6. High Availability

Kyuubi, Release 1.3.0

For CDH 6.x Users

If you are using CDH 6.x, there is a trick that CDH 6.x blocks Spark in default, you need to modify the configuration
to overwrite the desktop.app_blacklist to remove this restriction.

Config Hue in Cloudera Manager.

Refer following configuration and tune it to fit your environment.

[desktop]
app_blacklist=zookeeper,hbase,impala,search,sqoop,security
use_new_editor=true

[[interpreters]]
[[[sparksql]]]

name=Spark SQL
interface=hiveserver2
other interpreters
...

[spark]
sql_server_host=kyuubi-server-host
sql_server_port=10009

You need to restart the Hue Service to activate the configuration changes, and then Spark SQL will available in editor
list.

6.1. Quick Start 49

Kyuubi, Release 1.3.0

Having fun with Hue and Kyuubi!

50 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.2 Deploying Kyuubi

In this section, you will learn how to deploy Kyuubi against different platforms.

6.2.1 Basics

Deploy Kyuubi engines on Yarn

Requirements

When you want to deploy Kyuubi’s Spark SQL engines on YARN, you’d better have cognition upon the following
things.

• Knowing the basics about Running Spark on YARN

• A binary distribution of Spark which is built with YARN support

– You can use the built-in Spark distribution

– You can get it from Spark official website directly

– You can Build Spark with -Pyarn maven option

• An active Apache Hadoop YARN cluster

• An active Apache Hadoop HDFS cluster

• Setup Hadoop client configurations at the machine the Kyuubi server locates

Configurations

Environment

Either HADOOP_CONF_DIR or YARN_CONF_DIR is configured and points to the Hadoop client configurations di-
rectory, usually, $HADOOP_HOME/etc/hadoop.

If the HADOOP_CONF_DIR points the YARN and HDFS cluster correctly, you should be able to run the SparkPi
example on YARN.

$ HADOOP_CONF_DIR=/path/to/hadoop/conf $SPARK_HOME/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--queue thequeue \
$SPARK_HOME/examples/jars/spark-examples*.jar \
10

6.2. Deploying Kyuubi 51

http://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version-and-enabling-yarn
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Kyuubi, Release 1.3.0

If the SparkPi passes, configure it in $KYUUBI_HOME/conf/kyuubi-env.sh or $SPARK_HOME/conf/
spark-env.sh, e.g.

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.
→˓sh

Spark Properties

These properties are defined by Spark and Kyuubi will pass them to spark-submit to create Spark applications.

Note: None of these would take effect if the application for a particular user already exists.

• Specify it in the JDBC connection URL, e.g. jdbc:hive2://localhost:10009/;#spark.
master=yarn;spark.yarn.queue=thequeue

• Specify it in $KYUUBI_HOME/conf/kyuubi-defaults.conf

• Specify it in $SPARK_HOME/conf/spark-defaults.conf

Note: The priority goes down from top to bottom.

Master

Setting spark.master=yarn tells Kyuubi to submit Spark SQL engine applications to the YARN cluster manager.

Queue

Set spark.yarn.queue=thequeue in the JDBC connection string to tell Kyuubi to use the QUEUE in the YARN
cluster, otherwise, the QUEUE configured at Kyuubi server side will be used as default.

Sizing

Pass the configurations below through the JDBC connection string to set how many instances of Spark executor will
be used and how many cpus and memory will Spark driver, ApplicationMaster and each executor take.

It is recommended to use Dynamic Allocation with Kyuubi, since the SQL engine will be long-running for a period,
execute user’s queries from clients periodically, and the demand for computing resources is not the same for those
queries. It is better for Spark to release some executors when either the query is lightweight, or the SQL engine is
being idled.

Tuning

You can specify spark.yarn.archive or spark.yarn.jars to point to a world-readable location that con-
tains Spark jars on HDFS, which allows YARN to cache it on nodes so that it doesn’t need to be distributed each time
an application runs.

52 Chapter 6. High Availability

http://spark.apache.org/docs/3.0.1/configuration.html#dynamic-allocation

Kyuubi, Release 1.3.0

Others

Please refer to Spark properties to check other acceptable configs.

Kerberos

Kyuubi currently does not support Spark’s YARN-specific Kerberos Configuration, so spark.kerberos.keytab
and spark.kerberos.principal should not use now.

Instead, you can schedule a periodically kinit process via crontab task on the local machine that hosts Kyuubi
server or simply use Kyuubi Kinit.

Deploy Kyuubi engines on Kubernetes

Requirements

When you want to run Kyuubi’s Spark SQL engines on Kubernetes, you’d better have cognition upon the following
things.

• Read about Running Spark On Kubernetes

• An active Kubernetes cluster

• Kubectl

• KubeConfig of the target cluster

Configurations

Master

Spark on Kubernetes config master by using a special format.

spark.master=k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>

You can use cmd kubectl cluster-info to get api-server host and port.

6.2. Deploying Kyuubi 53

http://spark.apache.org/docs/latest/running-on-yarn.html#spark-properties
http://spark.apache.org/docs/3.0.1/running-on-yarn.html#kerberos
settings.html#kinit
http://spark.apache.org/docs/latest/running-on-kubernetes.html
https://kubernetes.io/docs/reference/kubectl/overview/

Kyuubi, Release 1.3.0

Docker Image

Spark ships a ./bin/docker-image-tool.sh script to build and publish the Docker images for running Spark
applications on Kubernetes.

When deploying Kyuubi engines against a Kubernetes cluster, we need to set up the docker images in the Docker
registry first.

Example usage is:

./bin/docker-image-tool.sh -r <repo> -t my-tag build

./bin/docker-image-tool.sh -r <repo> -t my-tag push
To build docker image with specify openJdk
./bin/docker-image-tool.sh -r <repo> -t my-tag -b java_image_tag=<openjdk:${java_
→˓image_tag}> build
To build additional PySpark docker image
./bin/docker-image-tool.sh -r <repo> -t my-tag -p ./kubernetes/dockerfiles/spark/
→˓bindings/python/Dockerfile build
To build additional SparkR docker image
./bin/docker-image-tool.sh -r <repo> -t my-tag -R ./kubernetes/dockerfiles/spark/
→˓bindings/R/Dockerfile build

Test Cluster

You can use the shell code to test your cluster whether it is normal or not.

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
--class org.apache.spark.examples.SparkPi \
--conf spark.executor.instances=5 \
--conf spark.dynamicAllocation.enabled=false \
--conf spark.shuffle.service.enabled=false \
--conf spark.kubernetes.container.image=<spark-image> \
local://<path_to_examples.jar>

When running shell, you can use cmd kubectl describe pod <podName> to check if the information meets
expectations.

ServiceAccount

When use Client mode to submit application, spark driver use the kubeconfig to access api-service to create and watch
executor pods.

When use Cluster mode to submit application, spark driver pod use serviceAccount to access api-service to create and
watch executor pods.

In both cases, you need to figure out whether you have the permissions under the corresponding namespace. You can
use following cmd to create serviceAccount (You need to have the kubeconfig which have the create serviceAccount
permission).

create serviceAccount
kubectl create serviceaccount spark -n <namespace>
binding role
kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=
→˓<namespace>:spark --namespace=<namespace>

54 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Volumes

As it known to us all, Kubernetes can use configurations to mount volumes into driver and executor pods.

• hostPath: mounts a file or directory from the host node’s filesystem into a pod.

• emptyDir: an initially empty volume created when a pod is assigned to a node.

• nfs: mounts an existing NFS(Network File System) into a pod.

• persistentVolumeClaim: mounts a PersistentVolume into a pod.

Note: Please see the Security section of this document for security issues related to volume mounts.

spark.kubernetes.driver.volumes.<type>.<name>.options.path=<dist_path>
spark.kubernetes.driver.volumes.<type>.<name>.mount.path=<container_path>

spark.kubernetes.executor.volumes.<type>.<name>.options.path=<dist_path>
spark.kubernetes.executor.volumes.<type>.<name>.mount.path=<container_path>

Read Using Kubernetes Volumes for more about volumes.

PodTemplateFile

Kubernetes allows defining pods from template files. Spark users can similarly use template files to define the driver
or executor pod configurations that Spark configurations do not support.

To do so, specify the spark properties spark.kubernetes.driver.podTemplateFile and spark.
kubernetes.executor.podTemplateFile to point to local files accessible to the spark-submit process.

Other

You can read Spark’s official documentation for Running on Kubernetes for more information.

Integration with Hive Metastore

In this section, you will learn how to configure Kyuubi to interact with Hive Metastore.

• A common Hive metastore server could be set at Kyuubi server side

• Individual Hive metastore servers could be used for end users to set

6.2. Deploying Kyuubi 55

http://spark.apache.org/docs/latest/running-on-kubernetes.html#security
http://spark.apache.org/docs/latest/running-on-kubernetes.html#using-kubernetes-volumes
http://spark.apache.org/docs/latest/running-on-kubernetes.html

Kyuubi, Release 1.3.0

Requirements

• A running Hive metastore server

– Hive Metastore Administration

– Configuring the Hive Metastore for CDH

• A Spark binary distribution built with -Phive support

– Use the built-in one in the Kyuubi distribution

– Download from Spark official website

– Build from Spark source, Building With Hive and JDBC Support

• A copy of Hive client configuration

So the whole thing here is to let Spark applications use this copy of Hive configuration to start a Hive metastore client
for their own to talk to the Hive metastore server.

Default Behavior

By default, Kyuubi launches Spark SQL engines pointing to a dummy embedded Apache Derby-based metastore for
each application, and this metadata can only be seen by one user at a time, e.g.

bin/beeline -u 'jdbc:hive2://localhost:10009/' -n kentyao
Connecting to jdbc:hive2://localhost:10009/
Connected to: Spark SQL (version 1.0.0-SNAPSHOT)
Driver: Hive JDBC (version 2.3.7)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 2.3.7 by Apache Hive
0: jdbc:hive2://localhost:10009/> show databases;
2020-11-16 23:50:50.388 INFO operation.ExecuteStatement:

Spark application name: kyuubi_kentyao_spark_2020-11-16T15:50:08.968Z
application ID: local-1605541809797
application web UI: http://192.168.1.14:60165
master: local[*]
deploy mode: client
version: 3.0.1

Start time: 2020-11-16T15:50:09.123Z
User: kentyao

2020-11-16 23:50:50.404 INFO metastore.HiveMetaStore: 2: get_databases: *
2020-11-16 23:50:50.404 INFO HiveMetaStore.audit: ugi=kentyao ip=unknown-ip-
→˓addr cmd=get_databases: *
2020-11-16 23:50:50.423 INFO operation.ExecuteStatement: Processing kentyao's
→˓query[8453e657-c1c4-4391-8406-ab4747a66c45]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: show databases, time taken: 0.035 seconds
+------------+
| namespace |
+------------+
| default |
+------------+
1 row selected (0.122 seconds)
0: jdbc:hive2://localhost:10009/> show tables;
2020-11-16 23:50:52.957 INFO operation.ExecuteStatement:

Spark application name: kyuubi_kentyao_spark_2020-11-16T15:50:08.968Z
application ID: local-1605541809797
application web UI: http://192.168.1.14:60165

(continues on next page)

56 Chapter 6. High Availability

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://docs.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_metastore_configure.html
https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/building-spark.html#building-with-hive-and-jdbc-support
https://db.apache.org/derby/

Kyuubi, Release 1.3.0

(continued from previous page)

master: local[*]
deploy mode: client
version: 3.0.1

Start time: 2020-11-16T15:50:09.123Z
User: kentyao

2020-11-16 23:50:52.968 INFO metastore.HiveMetaStore: 2: get_database: default
2020-11-16 23:50:52.968 INFO HiveMetaStore.audit: ugi=kentyao ip=unknown-ip-
→˓addr cmd=get_database: default
2020-11-16 23:50:52.970 INFO metastore.HiveMetaStore: 2: get_database: default
2020-11-16 23:50:52.970 INFO HiveMetaStore.audit: ugi=kentyao ip=unknown-ip-
→˓addr cmd=get_database: default
2020-11-16 23:50:52.972 INFO metastore.HiveMetaStore: 2: get_tables: db=default pat=*
2020-11-16 23:50:52.972 INFO HiveMetaStore.audit: ugi=kentyao ip=unknown-ip-
→˓addr cmd=get_tables: db=default pat=*
2020-11-16 23:50:52.986 INFO operation.ExecuteStatement: Processing kentyao's
→˓query[ff902582-ba29-433b-b70a-c25ead1353a8]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: show tables, time taken: 0.03 seconds
+-----------+------------+--------------+
| database | tableName | isTemporary |
+-----------+------------+--------------+
+-----------+------------+--------------+
No rows selected (0.04 seconds)

Using this mode for experimental purposes only.

In a real production environment, we always have a communal standalone metadata store, to manage the metadata of
persistent relational entities, e.g. databases, tables, columns, partitions, for fast access. Usually, Hive metastore as the
de facto.

Related Configurations

These are the basic needs for a Hive metastore client to communicate with the remote Hive Metastore server.

Use remote metastore database or server mode depends on the server-side configuration.

Remote Metastore Database

Remote Metastore Server

Activate Configurations

Via kyuubi-defaults.conf

In $KYUUBI_HOME/conf/kyuubi-defaults.conf, all Hive primitive configurations, e.g. hive.
metastore.uris, and the Spark derivatives, which are prefixed with spark.hive. or spark.hadoop.,
e.g spark.hive.metastore.uris or spark.hadoop.hive.metastore.uris, will be loaded as Hive
primitives by the Hive client inside the Spark application.

Kyuubi will take these configurations as system wide defaults for all applications it launches.

6.2. Deploying Kyuubi 57

Kyuubi, Release 1.3.0

Via hive-site.xml

Place your copy of hive-site.xml into $SPARK_HOME/conf, every single Spark application will automatically
load this config file to its classpath.

This version of configuration has lower priority than those in $KYUUBI_HOME/conf/kyuubi-defaults.
conf.

Via JDBC Connection URL

We can pass Hive primitives or Spark derivatives directly in the JDBC connection URL, e.g.

jdbc:hive2://localhost:10009/;#hive.metastore.uris=thrift://localhost:9083

This will override the defaults in $SPARK_HOME/conf/hive-site.xml and $KYUUBI_HOME/conf/
kyuubi-defaults.conf for each user account.

With this feature, end users are possible to visit different Hive metastore server instance. Similarly, this works for
other services like HDFS, YARN too.

Limitation: As most Hive configurations are final and unmodifiable in Spark at runtime, this only takes effect during
instantiating the Spark applications and will be ignored when reusing an existing application. So, keep this in our
mind.

!!!THIS WORKS ONLY ONCE!!!

!!!THIS WORKS ONLY ONCE!!!

!!!THIS WORKS ONLY ONCE!!!

Via SET syntax

Most Hive configurations are final and unmodifiable in Spark at runtime, so keep this in our mind.

!!!THIS WON’T WORK!!!

!!!THIS WON’T WORK!!!

!!!THIS WON’T WORK!!!

Version Compatibility

If backward compatibility is guaranteed by Hive versioning, we can always use a lower version Hive metastore client
to communicate with the higher version Hive metastore server.

For example, Spark 3.0 was released with a built-in Hive client (2.3.7), so, ideally, the version of server should >=
2.3.x.

If you do have a legacy Hive metastore server that cannot be easily upgraded, and you may face the issue by default
like this,

Caused by: org.apache.thrift.TApplicationException: Invalid method name: 'get_table_
→˓req'

at org.apache.thrift.TServiceClient.receiveBase(TServiceClient.java:79)
at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.recv_get_

→˓table_req(ThriftHiveMetastore.java:1567)

(continues on next page)

58 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.get_table_
→˓req(ThriftHiveMetastore.java:1554)

at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.
→˓getTable(HiveMetaStoreClient.java:1350)

at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.
→˓getTable(SessionHiveMetaStoreClient.java:127)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

→˓java:62)
at sun.reflect.DelegatingMethodAccessorImpl.

→˓invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.

→˓invoke(RetryingMetaStoreClient.java:173)
at com.sun.proxy.$Proxy37.getTable(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

→˓java:62)
at sun.reflect.DelegatingMethodAccessorImpl.

→˓invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient$SynchronizedHandler.

→˓invoke(HiveMetaStoreClient.java:2336)
at com.sun.proxy.$Proxy37.getTable(Unknown Source)
at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1274)
... 93 more

To prevent this problem, we can use Spark’s Interacting with Different Versions of Hive Metastore.

Further Readings

• Hive Wiki

– Hive Metastore Administration

• Spark Online Documentation

– Custom Hadoop/Hive Configuration

– Hive Tables

Kyuubi High Availability Guide

As an enterprise-class ad-hoc SQL query service built on top of Apache Spark, Kyuubi takes high availability(HA) as
a major characteristic, aiming to ensure an agreed level of service availability, such as a higher than normal period of
uptime.

Running Kyuubi in HA mode is to use groups of computers or containers that support SQL query service on Kyuubi
that can be reliably utilized with a minimum amount of down-time. Kyuubi operates by using Apache ZooKeeper to
harness redundant service instances in groups that provide continuous service when one or more components fail.

Without HA, if a server crashes, Kyuubi will be unavailable until the crashed server is fixed. With HA, this situation
will be remedied by hardware/software faults auto-detecting, and immediately another Kyuubi service instance will
be ready to serve without requiring human intervention.

6.2. Deploying Kyuubi 59

http://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
http://spark.apache.org/docs/latest/configuration.html#custom-hadoophive-configuration
http://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html
http://spark.apache.org/
https://zookeeper.apache.org/

Kyuubi, Release 1.3.0

Load Balance Mode

Load balancing aims to optimize all Kyuubi service unit’s usage, maximize throughput, minimize response time, and
avoid overload of a single unit. Using multiple Kyuubi service units with load balancing instead of a single unit may
increase reliability and availability through redundancy.

With Hive JDBC Driver, a client can specify service discovery mode in JDBC connection string, i.e.
serviceDiscoveryMode=zooKeeper; and set zooKeeperNamespace=kyuubi;, then it can randomly
pick one of the Kyuubi service uris from the specified ZooKeeper address in the /kyuubi path.

When we specify the ZooKeeper address via kyuubi.ha.zookeeper.quorum, load balance mode is activated by
default. Please make sure that you specify the correct ZooKeeper address via kyuubi.ha.zookeeper.quorum
and kyuubi.ha.zookeeper.client.port. For more details, see Introduction to the Kyuubi Configurations
System

60 Chapter 6. High Availability

./setting.html#ha
./setting.html#ha

Kyuubi, Release 1.3.0

6.2.2 Configurations

Introduction to the Kyuubi Configurations System

Kyuubi provides several ways to configure the system and corresponding engines.

Environments

You can configure the environment variables in $KYUUBI_HOME/conf/kyuubi-env.sh, e.g, JAVA_HOME,
then this java runtime will be used both for Kyuubi server instance and the applications it launches. You can also
change the variable in the subprocess’s env configuration file, e.g.$SPARK_HOME/conf/spark-env.sh to use
more specific ENV for SQL engine applications.

#!/usr/bin/env bash
#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
#
- JAVA_HOME Java runtime to use. By default use "java" from PATH.
#
#
- KYUUBI_CONF_DIR Directory containing the Kyuubi configurations to use.
(Default: $KYUUBI_HOME/conf)
- KYUUBI_LOG_DIR Directory for Kyuubi server-side logs.
(Default: $KYUUBI_HOME/logs)
- KYUUBI_PID_DIR Directory stores the Kyuubi instance pid file.
(Default: $KYUUBI_HOME/pid)
- KYUUBI_MAX_LOG_FILES Maximum number of Kyuubi server logs can rotate to.
(Default: 5)
- KYUUBI_JAVA_OPTS JVM options for the Kyuubi server itself in the form "-
→˓Dx=y".

(continues on next page)

6.2. Deploying Kyuubi 61

Kyuubi, Release 1.3.0

(continued from previous page)

(Default: none).
- KYUUBI_BEELINE_OPTS JVM options for the Kyuubi BeeLine in the form "-Dx=Y".
(Default: none)
- KYUUBI_NICENESS The scheduling priority for Kyuubi server.
(Default: 0)
- KYUUBI_WORK_DIR_ROOT Root directory for launching sql engine applications.
(Default: $KYUUBI_HOME/work)
- HADOOP_CONF_DIR Directory containing the Hadoop / YARN configuration to
→˓use.
#
- SPARK_HOME Spark distribution which you would like to use in Kyuubi.
- SPARK_CONF_DIR Optional directory where the Spark configuration lives.
(Default: $SPARK_HOME/conf)
#

Examples

export JAVA_HOME=/usr/jdk64/jdk1.8.0_152
export SPARK_HOME=/opt/spark
export HADOOP_CONF_DIR=/usr/ndp/current/mapreduce_client/conf
export KYUUBI_JAVA_OPTS="-Xmx10g -XX:+UnlockDiagnosticVMOptions -
→˓XX:ParGCCardsPerStrideChunk=4096 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
→˓XX:+CMSConcurrentMTEnabled -XX:CMSInitiatingOccupancyFraction=70 -
→˓XX:+UseCMSInitiatingOccupancyOnly -XX:+CMSClassUnloadingEnabled -
→˓XX:+CMSParallelRemarkEnabled -XX:+UseCondCardMark -XX:MaxDirectMemorySize=1024m -
→˓XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=./logs -verbose:gc -
→˓XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintTenuringDistribution -Xloggc:./
→˓logs/kyuubi-server-gc-%t.log -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -
→˓XX:GCLogFileSize=5M -XX:NewRatio=3 -XX:MetaspaceSize=512m"
export KYUUBI_BEELINE_OPTS="-Xmx2g -XX:+UnlockDiagnosticVMOptions -
→˓XX:ParGCCardsPerStrideChunk=4096 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
→˓XX:+CMSConcurrentMTEnabled -XX:CMSInitiatingOccupancyFraction=70 -
→˓XX:+UseCMSInitiatingOccupancyOnly -XX:+CMSClassUnloadingEnabled -
→˓XX:+CMSParallelRemarkEnabled -XX:+UseCondCardMark"

For the environment variables that only needed to be transferred into engine side, you can set it with a Kyu-
ubi configuration item formatted kyuubi.engineEnv.VAR_NAME. For example, with kyuubi.engineEnv.
SPARK_DRIVER_MEMORY=4g, the environment variable SPARK_DRIVER_MEMORY with value 4g would be
transferred into engine side. With kyuubi.engineEnv.SPARK_CONF_DIR=/apache/confs/spark/
conf, the value of SPARK_CONF_DIR in engine side is set to /apache/confs/spark/conf.

Kyuubi Configurations

You can configure the Kyuubi properties in $KYUUBI_HOME/conf/kyuubi-defaults.conf. For example:

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

62 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

Kyuubi Configurations

#
kyuubi.authentication NONE
kyuubi.frontend.bind.host localhost
kyuubi.frontend.bind.port 10009
#

Details in https://kyuubi.apache.org/docs/latest/deployment/settings.html

Authentication

Backend

Credentials

Delegation

Engine

Frontend

Ha

Kinit

Metrics

Operation

Session

Zookeeper

Spark Configurations

Via spark-defaults.conf

Setting them in $SPARK_HOME/conf/spark-defaults.conf supplies with default values for SQL engine
application. Available properties can be found at Spark official online documentation for Spark Configurations

6.2. Deploying Kyuubi 63

http://spark.apache.org/docs/latest/configuration.html

Kyuubi, Release 1.3.0

Via kyuubi-defaults.conf

Setting them in $KYUUBI_HOME/conf/kyuubi-defaults.conf supplies with default values for SQL engine
application too. These properties will override all settings in $SPARK_HOME/conf/spark-defaults.conf

Via JDBC Connection URL

Setting them in the JDBC Connection URL supplies session-specific for each SQL engine. For exam-
ple: jdbc:hive2://localhost:10009/default;#spark.sql.shuffle.partitions=2;spark.
executor.memory=5g

• Runtime SQL Configuration

– For Runtime SQL Configurations, they will take affect every time

• Static SQL and Spark Core Configuration

– For Static SQL Configurations and other spark core configs, e.g. spark.executor.memory, they will
take affect if there is no existing SQL engine application. Otherwise, they will just be ignored

Via SET Syntax

Please refer to the Spark official online documentation for SET Command

Logging

Kyuubi uses log4j for logging. You can configure it using $KYUUBI_HOME/conf/log4j.properties.

#
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss.SSS} %p %c{2}:
→˓%m%n

Set the default kyuubi-ctl log level to WARN. When running the kyuubi-ctl, the

(continues on next page)

64 Chapter 6. High Availability

http://spark.apache.org/docs/latest/configuration.html#runtime-sql-configuration
http://spark.apache.org/docs/latest/configuration.html#static-sql-configuration
http://spark.apache.org/docs/latest/sql-ref-syntax-aux-conf-mgmt-set.html
https://logging.apache.org/log4j/2.x/

Kyuubi, Release 1.3.0

(continued from previous page)

log level for this class is used to overwrite the root logger's log level.
log4j.logger.org.apache.kyuubi.ctl.ServiceControlCli=ERROR

Analysis MySQLFrontend protocol traffic
log4j.logger.org.apache.kyuubi.server.mysql.codec=TRACE

Kyuubi BeeLine
log4j.logger.org.apache.hive.beeline.KyuubiBeeLine=ERROR

Other Configurations

Hadoop Configurations

Specifying HADOOP_CONF_DIR to the directory contains hadoop configuration files or treating them as Spark prop-
erties with a spark.hadoop. prefix. Please refer to the Spark official online documentation for Inheriting Hadoop
Cluster Configuration. Also, please refer to the Apache Hadoop’s online documentation for an overview on how to
configure Hadoop.

Hive Configurations

These configurations are used for SQL engine application to talk to Hive MetaStore and could be configured in
a hive-site.xml. Placed it in $SPARK_HOME/conf directory, or treating them as Spark properties with a
spark.hadoop. prefix.

User Defaults

In Kyuubi, we can configure user default settings to meet separate needs. These user defaults override system defaults,
but will be overridden by those from JDBC Connection URL or Set Command if could be. They will take effect
when creating the SQL engine application ONLY. User default settings are in the form of ___{username}___.
{config key}. There are three continuous underscores(_) at both sides of the username and a dot(.) that
separates the config key and the prefix. For example:

For system defaults
spark.master=local
spark.sql.adaptive.enabled=true
For a user named kent
___kent___.spark.master=yarn
___kent___.spark.sql.adaptive.enabled=false
For a user named bob
___bob___.spark.master=spark://master:7077
___bob___.spark.executor.memory=8g

In the above case, if there are related configurations from JDBC Connection URL, kent will run his SQL engine
application on YARN and prefer the Spark AQE to be off, while bob will activate his SQL engine application on a
Spark standalone cluster with 8g heap memory for each executor and obey the Spark AQE behavior of Kyuubi system
default. On the other hand, for those users who do not have custom configurations will use system defaults.

6.2. Deploying Kyuubi 65

http://spark.apache.org/docs/latest/configuration.html#inheriting-hadoop-cluster-configuration
http://spark.apache.org/docs/latest/configuration.html#inheriting-hadoop-cluster-configuration
http://hadoop.apache.org

Kyuubi, Release 1.3.0

The Engine Configuration Guide

Kyuubi aims to bring Spark to end-users who need not qualify with Spark or something else related to the big data
area. End-users can write SQL queries through JDBC against Kyuubi and nothing more. The Kyuubi server-side or
the corresponding engines could do most of the optimization. On the other hand, we don’t wholly restrict end-users
to special handling of specific cases to benefit from the following documentations. Even if you don’t use Kyuubi, as a
simple Spark user, I’m sure you’ll find the next articles instructive.

How To Use Spark Dynamic Resource Allocation (DRA) in Kyuubi

When we adopt Kyuubi in a production environment, we always want to use the environment’s computing resources
more cost-effectively and efficiently. Cluster managers such as K8S and Yarn manage the cluster compute resources,
divided into different queues or namespaces with different ACLs and quotas.

In Kyuubi, we acquire computing resources from the cluster manager to submit the engines. The engines respond
to various types of client requests, some of which consume many computing resources to process, while others may
require very few resources to complete. If we have fixed-sized engines, a.k.a. with a fixed number for spark.
executor.instances, it may cause a waste of resources for some lightweight workloads, while for some heavy-
weight workloads, it should probably not have enough concurrency capacity resulting in poor performance.

When the engine has executor idled, we should release it back to the resource pool promptly, and conversely, when the
engine is doing chubby tasks, we should be able to get and use more resources more efficiently. On the one hand, we
need to rely on the resource manager’s capabilities for efficient resource allocation, resource isolation, and sharing.
On the other hand, we need to enable Spark’s DRA feature for the engines’ executors’ elastic scaling.

66 Chapter 6. High Availability

Kyuubi, Release 1.3.0

The Basics of Dynamic Resource Allocation

Spark provides a mechanism to dynamically adjust the application resources based on the workload, which means that
an application may give resources back to the cluster if they are no longer used and request them again later when there
is demand. This feature is handy if multiple applications share resources on YARN, Kubernetes, and other platforms.

For Kyuubi engines, which are typical Spark applications, the dynamic allocation allows Spark to dynamically scale
the cluster resources allocated to them based on the workloads. When dynamic allocation is enabled, and an engine
has a backlog of pending tasks, it can request executors via ExecutorAllocationManager. When the engine
has executors that become idle, the executors are released, and the occupied resources are given back to the cluster
manager. Then other engines or other applications run in the same queue could acquire the resources.

How to Enable Dynamic Resource Allocation

The prerequisite for enabling this feature is for downstream stages to have proper access to shuffle data, even if the
executors that generated the data are recycled.

Spark provides two implementations for shuffle data tracking. If either is enabled, we can use the DRA feature
properly.

Dynamic Resource Allocation w/ External Shuffle Service

Having an external shuffle service (ESS) makes sure that all the data is stored outside of executors. This prerequisite
was needed as Spark needed to ensure that the executors’ removal does not remove shuffle data. When deploying
Kyuubi with a cluster manager that provides ESS, enable DRA for all the engines with the configurations below.

spark.dynamicAllocation.enabled=true
spark.shuffle.service.enabled=true

Another thing to be sure of is that spark.shuffle.service.port should be configured to point to the port on
which the ESS is running.

Dynamic Allocation w/o External Shuffle Service

Implementations of the ESS feature are cluster manager dependent. Yarn, for instance, where the ESS needs to
be deployed cluster-widely and is actually running in the Yarn’s NodeManager component. Nevertheless, if run
Kyuubi’s engines on Kubernetes, the ESS is not an option yet. Since Spark 3.0, the DRA can run without ESS. The
relative feature called Shuffle Tracking was introduced by SPARK-27963.

When deploying Kyuubi with a cluster manager that without ESS or the ESS is not attractive, enable DRA with
Shuffle Tracking instead for all the engines with the configurations below.

spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.shuffleTracking.enabled=true

When Shuffle Tracking is enabled, spark.dynamicAllocation.shuffleTracking.
timeout(default: infinity) controls the timeout for executors that are holding shuffle data. Spark
will rely on the shuffles being garbage collected to be able to release executors by default. When the garbage
collection is not cleaning up shuffles quickly enough, this timeout forces Spark to delete executors even when they
are storing shuffle data.

6.2. Deploying Kyuubi 67

https://issues.apache.org/jira/browse/SPARK-27963

Kyuubi, Release 1.3.0

Sizing for engines w/ Dynamic Resource Allocation

Resources for a single executor, such as CPUs and memory, can be fixed size. So, the range [minExecutors,
maxExecutors] determines how many recourses the engine can take from the cluster manager.

On the one hand, the minExecutors tells Spark to keep how many executors at least. If it is set too close to
0(default), the engine might complain about a lack of resources if the cluster manager is quite busy and for a long
time. However, the larger the minExecutors goes, the more resources may be wasted during the engine’s idle time.

On the other hand, the maxExecutors determines the upper bound executors of an engine could reach. From the
individual engine perspective, this value is the larger, the better, to handle heavier queries. However, we must limit it
to a reasonable range in terms of the entire cluster’s resources. Otherwise, a large query may trigger the engine where
it runs to consume too many resources from the queue/namespace and occupy them for a considerable time, which
could be a bad idea for using the resources efficiently. In this case, we would prefer that such an enormous task be
done more slowly in a limited amount of concurrency.

The following Spark configurations consist of sizing for the DRA.

spark.dynamicAllocation.minExecutors=10
spark.dynamicAllocation.maxExecutors=500

Additionally, another config called spark.dynamicAllocation.initialExecutors can be used to decide
how many executors to request during engine bootstrapping or failover.

Ideally, the size relationship between them should be as minExecutors <= initialExecutors <
maxExecutors.

Resource Allocation Policy

When the DRA notices that the current resources are insufficient for the current workload, it will request more execu-
tors.

By default, the dynamic allocation will request enough executors to maximize the parallelism according to the number
of tasks to process.

68 Chapter 6. High Availability

Kyuubi, Release 1.3.0

While this minimizes the latency of the job, but with small tasks, the default behavior can waste many resources due
to executor allocation overhead, as some executors might not even do any work.

In this case, we can adjust spark.dynamicAllocation.executorAllocationRatio a bit lower to reduce
the number of executors w.r.t. full parallelism. For instance, 0.5 will divide the target number of executors by 2.

After finish one task, Spark Driver will schedule a new task for the executor with available cores. When pending tasks
become fewer and fewer, some executors become idle for no new coming tasks.

6.2. Deploying Kyuubi 69

Kyuubi, Release 1.3.0

If one executor reached the maximum timeout, it will be removed.

spark.dynamicAllocation.executorIdleTimeout=60s
spark.dynamicAllocation.cachedExecutorIdleTimeout=infinity

If the DRA finds there have been pending tasks backlogged for more than the timeouts, new executors will be re-
quested, controlled by the following configs.

spark.dynamicAllocation.schedulerBacklogTimeout=1s
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout=1s

70 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Best Practices for Applying DRA to Kyuubi

Kyuubi is a long-running service to make it easier for end-users to use Spark SQL without having much of Spark’s
basic knowledge. It is essential to have a basic configuration for resource management that works for most scenarios
on the server-side.

Setting Default Configurations

Configuring by spark-defaults.conf at the engine side is the best way to set up Kyuubi with DRA. All engines
will be instantiated with DRA enabled.

Here is a config setting that we use in our platform when deploying Kyuubi.

spark.dynamicAllocation.enabled=true
##false if perfer shuffle tracking than ESS
spark.shuffle.service.enabled=true
spark.dynamicAllocation.initialExecutors=10
spark.dynamicAllocation.minExecutors=10
spark.dynamicAllocation.maxExecutors=500
spark.dynamicAllocation.executorAllocationRatio=0.5
spark.dynamicAllocation.executorIdleTimeout=60s
spark.dynamicAllocation.cachedExecutorIdleTimeout=30min
true if perfer shuffle tracking than ESS
spark.dynamicAllocation.shuffleTracking.enabled=false
spark.dynamicAllocation.shuffleTracking.timeout=30min
spark.dynamicAllocation.schedulerBacklogTimeout=1s
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout=1s
spark.cleaner.periodicGC.interval=5min

Note that, spark.cleaner.periodicGC.interval=5min is useful here when spark.
dynamicAllocation.shuffleTracking.enabled is enabled, as we can tell Spark to be more active
for shuffle data GC.

Setting User Default Settings

On the server-side, the workloads for different users might be different.

Then we can set different defaults for them via the User Defaults in $KYUUBI_HOME/conf/kyuubi-defaults.
conf

For a user named kent
___kent___.spark.dynamicAllocation.maxExecutors=20
For a user named bob
___bob___.spark.dynamicAllocation.maxExecutors=600

In this case, the user named kent can only use 20 executors for his engines, but bob can use 600 executors for better
performance or handle heavy workloads.

6.2. Deploying Kyuubi 71

settings.html#via-spark-defaults-conf
../settings.html#user-defaults

Kyuubi, Release 1.3.0

Dynamically Setting

All AQE related configurations are static of Spark core and unchangeable by SET syntaxes before each SQL query.
For example,

SET spark.dynamicAllocation.maxExecutors=33;
SELECT * FROM default.tableA;

For the above case, the value - 33 will not affect as Spark does not support change core configurations in runtime.

Instead, end-users can set them via JDBC Connection URL for some specific cases.

References

1. Spark Official Online Document: Dynamic Resource Allocation

2. Spark Official Online Document: Dynamic Resource Allocation Configurations

3. SPARK-27963: Allow dynamic allocation without an external shuffle service

How To Use Spark Adaptive Query Execution (AQE) in Kyuubi

The Basics of AQE

Spark Adaptive Query Execution (AQE) is a query re-optimization that occurs during query execution.

In terms of technical architecture, the AQE is a framework of dynamic planning and replanning of queries based on
runtime statistics, which supports a variety of optimizations such as,

• Dynamically Switch Join Strategies

• Dynamically Coalesce Shuffle Partitions

• Dynamically Handle Skew Joins

In Kyuubi, we strongly recommended that you turn on all capabilities of AQE by default for Kyuubi engines, no matter
on what platform you run Kyuubi and Spark.

72 Chapter 6. High Availability

../settings.html#via-jdbc-connection-url
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
https://issues.apache.org/jira/browse/SPARK-27963

Kyuubi, Release 1.3.0

Dynamically Switch Join Strategies

Spark supports several join strategies, among which BroadcastHash Join is usually the most performant when
any join side fits well in memory. And for this reason, Spark plans a BroadcastHash Join if the estimated size
of a join relation is less than the spark.sql.autoBroadcastJoinThreshold.

spark.sql.autoBroadcastJoinThreshold=10M

Without AQE, the estimated size of join relations comes from the statistics of the original table. It can go wrong in
most real-world cases. For example, the join relation is a convergent but composite operation rather than a single table
scan. In this case, Spark might not be able to switch the join-strategy to BroadcastHash Join. While with AQE,
we can runtime calculate the size of the composite operation accurately. And then, Spark now can replan the join
strategy unmistakably if the size fits spark.sql.autoBroadcastJoinThreshold

What’s more, when spark.sql.adaptive.localShuffleReader.enabled=true and after converting
SortMerge Join to BroadcastHash Join, Spark also does future optimize to reduce the network traffic by
converting a regular shuffle to a localized shuffle.

6.2. Deploying Kyuubi 73

Kyuubi, Release 1.3.0

As shown in the above fig, the local shuffle reader can read all necessary shuffle files from its local storage, actually
without performing the shuffle across the network.

The local shuffle reader optimization consists of avoiding shuffle when the SortMerge Join transforms to
BroadcastHash Join after applying the AQE rules.

Dynamically Coalesce Shuffle Partitions

Without this feature, Spark itself could be a small files maker sometimes, especially in a pure SQL way like Kyuubi
does, for example,

1. When spark.sql.shuffle.partitions is set too large compared to the total output size, there comes
very small or empty files after a shuffle stage.

2. When Spark performs a series of optimized BroadcastHash Join and Union together, the final output
size for each partition might be reduced by the join conditions. However, the total final output file numbers get
to explode.

3. Some pipeline jobs with selective filters to produce temporary data.

4. e.t.c

Reading small files leads to very small partitions or tasks. Spark tasks will have worse I/O throughput and tend to
suffer more from scheduling overhead and task setup overhead.

74 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Combining small partitions saves resources and improves cluster throughput. Spark provides several ways to handle
small file issues, for example, adding an extra shuffle operation on the partition columns with the distribute by
clause or using HINT[5]. In most scenarios, you need to have a good grasp of your data, Spark jobs, and configurations
to apply these solutions case by case. Mostly, the daily used config - spark.sql.shuffle.partitions is
data-dependent and unchangeable with a single Spark SQL query. For real-life Spark jobs with multiple stages, it’
impossible to use it as one size to fit all.

But with AQE, things become more comfortable for you as Spark will do the partition coalescing automatically.

It can simplify the tuning of shuffle partition numbers when running Spark SQL queries. You do not need to set a
proper shuffle partition number to fit your dataset.

To enable this feature, we need to set the below two configs to true.

spark.sql.adaptive.enabled=true
spark.sql.adaptive.coalescePartitions.enabled=true

Other Tips for Best Practises

For further tuning our Spark jobs with this feature, we also need to be aware of these configs.

spark.sql.adaptive.advisoryPartitionSizeInBytes=128m
spark.sql.adaptive.coalescePartitions.minPartitionNum=1
spark.sql.adaptive.coalescePartitions.initialPartitionNum=200

6.2. Deploying Kyuubi 75

Kyuubi, Release 1.3.0

How to set spark.sql.adaptive.advisoryPartitionSizeInBytes?

It stands for the advisory size in bytes of the shuffle partition during adaptive query execution, which takes effect
when Spark coalesces small shuffle partitions or splits skewed shuffle partition. The default value of spark.sql.
adaptive.advisoryPartitionSizeInBytes is 64M. Typically, if we are reading and writing data with
HDFS, matching it with the block size of HDFS should be the best choice, i.e. 128MB or 256MB.

Consequently, all blocks or partitions in Spark and files in HDFS are chopped up to 128MB/256MB chunks. And think
about it, now all tasks for scans, sinks, and middle shuffle maps are dealing with mostly even-sized data partitions. It
will make us much easier to set up executor resources or even one size to fit all.

How to set spark.sql.adaptive.coalescePartitions.minPartitionNum?

It stands for the suggested (not guaranteed) minimum number of shuffle partitions after coalescing. If not set, the
default value is the default parallelism of the Spark application. The default parallelism is defined by spark.
default.parallelism or else the total count of cores registered. I guess the motivation of this behavior made
by the Spark community is to maximize the use of the resources and concurrency of the application.

But there are always exceptions. Relating these two seemingly unrelated parameters can be somehow tricky for
users. This config is optional by default which means users may not touch it in most real-world cases. But spark.
default.parallelism has a long history and is well known then. If users set the default parallelism to an
illegitimate high value unexpectedly, it could block AQE from coalescing partitions to a fair number. Another scenario
that requires special attention is writing data. Usually, coalescing partitions to avoid small file issues is more critical
than task concurrency for final output stages. A better data layout can benefit plenty of downstream jobs. I suggest
that we set spark.sql.adaptive.coalescePartitions.minPartitionNum to 1 in this case as Spark
will try its best to but not guaranteed to coalesce partitions for output.

How to set spark.sql.adaptive.coalescePartitions.initialPartitionNum?

It stands for the initial number of shuffle partitions before coalescing. By default, it equals to spark.sql.
shuffle.partitions(200). Firstly, it’s better to set it explicitly rather than falling back to spark.sql.
shuffle.partitions. Spark community suggests set a large number to it as Spark will dynamically coalesce
shuffle partitions, which I cannot agree more.

Dynamically Handle Skew Joins

Without AQE, the data skewness is very likely to occur for map-reduce computing models in the shuffle phase. Data
skewness can cause Spark jobs to have one or more tailing tasks, severely downgrading queries’ performance. This
feature dynamically handles skew in SortMerge Join by splitting (and replicating if needed) skewed tasks into
roughly evenly sized tasks. For example, The optimization will split oversized partitions into subpartitions and join
them to the other join side’s corresponding partition.

76 Chapter 6. High Availability

Kyuubi, Release 1.3.0

To enable this feature, we need to set the below two configs to true.

spark.sql.adaptive.enabled=true
spark.sql.adaptive.skewJoin.enabled=true

Other Tips for Best Practises

For further tuning our Spark jobs with this feature, we also need to be aware of these configs.

spark.sql.adaptive.skewJoin.skewedPartitionFactor=5
spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes=256M
spark.sql.adaptive.advisoryPartitionSizeInBytes=64M

How to set spark.sql.adaptive.skewJoin.skewedPartitionFactor and
skewedPartitionThresholdInBytes?

Spark uses these two configs and the median(not average) partition size to detect whether a partition skew or not.

partition size > skewedPartitionFactor * the median partition size && \
skewedPartitionThresholdInBytes

As Spark splits skewed partitions targeting spark.sql.adaptive.advisoryPartitionSizeInBytes, ideally
skewedPartitionThresholdInBytes should be larger than advisoryPartitionSizeInBytes.
In this case, anytime you increase advisoryPartitionSizeInBytes, you should also increase
skewedPartitionThresholdInBytes if you tend to enable the feature.

6.2. Deploying Kyuubi 77

aqe.html#how-to-set-spark-sql-adaptive-advisorypartitionsizeinbytes

Kyuubi, Release 1.3.0

Hidden Features

DemoteBroadcastHashJoin

Internally, Spark has an optimization rule that detects a join child with a high ratio of empty partitions and adds a
no-broadcast-hash-join hint to avoid broadcasting it.

spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin=0.2

By default, if there are only less than 20% partitions of the dataset contain data, Spark will not broadcast the dataset.

EliminateJoinToEmptyRelation

This optimization rule detects and converts a Join to an empty LocalRelation.

Disabling the Hidden Features

We can exclude some of the AQE additional rules if performance regression or bug occurs. For example,

SET spark.sql.adaptive.optimizer.excludedRules=org.apache.spark.sql.execution.
→˓adaptive.DemoteBroadcastHashJoin

Best Practices for Applying AQE to Kyuubi

Kyuubi is a long-running service to make it easier for end-users to use Spark SQL without having much of Spark’s
basic knowledge. It is essential to have a basic configuration that works for most scenarios on the server-side.

Setting Default Configurations

Configuring by spark-defaults.conf at the engine side is the best way to set up Kyuubi with AQE. All engines
will be instantiated with AQE enabled.

Here is a config setting that we use in our platform when deploying Kyuubi.

spark.sql.adaptive.enabled=true
spark.sql.adaptive.forceApply=false
spark.sql.adaptive.logLevel=info
spark.sql.adaptive.advisoryPartitionSizeInBytes=256m
spark.sql.adaptive.coalescePartitions.enabled=true
spark.sql.adaptive.coalescePartitions.minPartitionNum=1
spark.sql.adaptive.coalescePartitions.initialPartitionNum=8192
spark.sql.adaptive.fetchShuffleBlocksInBatch=true
spark.sql.adaptive.localShuffleReader.enabled=true
spark.sql.adaptive.skewJoin.enabled=true
spark.sql.adaptive.skewJoin.skewedPartitionFactor=5
spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes=400m
spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin=0.2
spark.sql.adaptive.optimizer.excludedRules
spark.sql.autoBroadcastJoinThreshold=-1

78 Chapter 6. High Availability

settings.html#via-spark-defaults-conf

Kyuubi, Release 1.3.0

Tips

Turn on AQE by default can significantly improve the user experience. Other sub-features are all enabled.
advisoryPartitionSizeInBytes is targeting the HDFS block size minPartitionNum is set to 1 for the
reason of coalescing first. initialPartitionNum has a high value. Since AQE requires at least one shuffle,
ideally, we need to set autoBroadcastJoinThreshold to -1 to involving SortMerge Join with a shuffle
for all user queries with joins. But then, the Dynamically Switch Join Strategies feature seems can not be applied later
in this case. It appears to be a typo limitation of Spark AQE so far.

Dynamically Setting

All AQE related configurations are runtime changeable, which means that it can still modify some specific configs by
SET syntaxes for each SQL query with more precise control on the client-side.

Spark Known issues

SPARK-33933: Broadcast timeout happened unexpectedly in AQE

For Spark versions(<3.1), we need to increase spark.sql.broadcastTimeout(300s) higher even the broad-
cast relation is tiny.

For other potential problems that may be found in the AQE features of Spark, you may refer to SPARK-33828: SQL
Adaptive Query Execution QA.

References

1. Adaptive Query Execution

2. Adaptive Query Execution: Speeding Up Spark SQL at Runtime

3. SPARK-31412: New Adaptive Query Execution in Spark SQL

4. SPARK-28560: Optimize shuffle reader to local shuffle reader when smj converted to bhj in adaptive execution

5. Coalesce and Repartition Hint for SQL Queries

6.2.3 Engines

6.2. Deploying Kyuubi 79

https://issues.apache.org/jira/browse/SPARK-33933
https://issues.apache.org/jira/browse/SPARK-33828
https://issues.apache.org/jira/browse/SPARK-33828
https://spark.apache.org/docs/latest/sql-performance-tuning.html#adaptive-query-execution
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://issues.apache.org/jira/browse/SPARK-31412
https://issues.apache.org/jira/browse/SPARK-28560
https://issues.apache.org/jira/browse/SPARK-24940

Kyuubi, Release 1.3.0

The Share Level Of Kyuubi Engines

The share level of Kyuubi engines describes the relationship between sessions and engines. It determines whether
a new session can share an existing backend engine with other sessions or not. The sessions are also known as
JDBC/ODBC/Thrift connections from clients that end-users create, and the engines are standalone applications with
the full capabilities of Spark SQL, Flink SQL(under dev), running on single-node machines or clusters.

The share level of Kyuubi engines works the same whether in HA or single node mode. In other words, an engine is
cluster widely shared by all Kyuubi server peers if could.

Why do we need this feature?

Apache Spark is a unified engine for large-scale data analytics. Using Spark to process data is like driving an all-
wheel-drive hefty horsepower supercar. However,

• Cars have their limit of 0-60 times. In a similar way, all Spark applications also have to warm up before go full
speed.

• Cars have a constant number of seats and are not allowed to be overloaded. Due to the master-slave architecture
of Spark and the resource configured ahead, the overall workload of a single application is predictable.

• Cars have various shapes to meet our needs.

With this feature, Kyuubi give you a more flexible way to handle different big data workloads.

The current supported share levels

The current supported share levels are,

• Better isolation degree of engines gives us better stability of an engine and the query executions running on it.

• Better sharability of engines means we are more likely to reuse an engine which is already in full speed.

CONNECTION

Figure.1 CONNECTION Share Level

Each session with CONNECTION share level has a standalone engine for itself which is unreachable for anyone else.
Within the session, a user or client can send multiple operation request, including metadata calls or queries, to the
corresponding engine.

Although it is still an interactive form, this model does allow for more practical batch processing jobs as well.

When closing session, the corresponding engine will be shutdown at the same time.

USER(Default)

Figure.2 USER Share Level

All sessions with USER share level use the same engine if and only if the session user is the same.

Those sessions share the same engine with objects belong to the one and only SparkContext instance, includ-
ing Classes/Classloaders, SparkConf, Driver/Executors, Hive Metastore Client, etc. But
each session can still have its own SparkSession instance, which contains separate session state, including tem-
porary views, SQL config, UDFs etc. Setting kyuubi.engine.single.spark.session to true will make
SparkSession instance a singleton and share across sessions.

80 Chapter 6. High Availability

Kyuubi, Release 1.3.0

When closing session, the corresponding engine will not be shutdown. When all sessions are closed, the corresponding
engine still has a time-to-live lifespan. This TTL allows new sessions to be established quickly without waiting for the
engine to start.

GROUP

Figure.3 GROUP Share Level

An engine will be shared by all sessions created by all users belong to the same primary group name. The engine will
be launched by the group name as the effective username, so here the group name is kind of special user who is able
to visit the compute resources/data of a team. It follows the Hadoop GroupsMapping to map user to a primary group.
If the primary group is not found, it falls back to the USER level.

The mechanisms of SparkContext, SparkSession and TTL works similarly to USER share level.

Tips for authorization in GROUP share level:

The session user and the primary group name(as sparkUser/execute user) will be both accessible at engine-side. By
default, the sparkUser will be used to check the YARN/HDFS ACLs. If you want fine-grained access control for
session user, you need to get it from SparkContext.getLocalProperty("kyuubi.session.user")
and send it to security service, like Apache Ranger.

SERVER

Figure.4 SERVER Share Level

Literally, this model is similar to Spark Thrift Server with High availability.

Subdomain

For USER, GROUP, or SERVER share levels, you can further use kyuubi.engine.share.level.subdomain
to isolate the engine. That is, you can also create multiple engines for a single user, group or server(cluster). For
example, in USER share level, you can use kyuubi.engine.share.level.subdomain=sd1 and kyuubi.
engine.share.level.subdomain=sd2 to create two standalone engines for user Tom.

The kyuubi.engine.share.level.subdomain shall be configured in the JDBC connection URL to tell the
Kyuubi server which engine you want to use.

Hybrid

All supported share levels can be used together in a single Kyuubi server or cluster.

Related Configurations

• kyuubi.engine.share.level(kyuubi.session.engine.share.level)

– Default: USER

– Candidates: USER, CONNECTION, GROUP, SERVER

– Meaning: The base level for how an engine is created, cached and shared to sessions.

– Usage: It can be set both in the server configuration file and also connection URL. The latter has higher
priority.

6.2. Deploying Kyuubi 81

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/GroupsMapping.html

Kyuubi, Release 1.3.0

• kyuubi.session.engine.idle.timeout

– Default: PT30M (30 min)

– Candidates: a proper timeout

– Meaning: Time to live since engine becomes idle

– Usage: It can be set both in the server configuration file and also connection URL. The latter has higher
priority.

• kyuubi.engine.share.level.subdomain(kyuubi.engine.share.level.sub.domain)

– Default:

– Candidates: a valid zookeeper a child node

– Meaning: Add a subdomain under the base level to make further isolation for engines

– Usage: It can be set both in the server configuration file and also connection URL. The latter has higher
priority.

Conclusion

With This feature, end-users are able to leverage engines in different ways to handle their different workloads, such as
large-scale ETL jobs and interactive ad hoc queries.

6.3 Kyuubi Security Overview

82 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.3.1 Kyuubi Authentication Mechanism

In a secure cluster, services should be able to identify and authenticate callers. As the fact that the user claims does
not necessarily mean this is true.

The authentication process of Kyuubi is used to verify the user identity that a client used to talk to the Kyuubi server.
Once done, a trusted connection will be set up between the client and server if successful; otherwise, rejected.

Note that, this authentication only authenticate whether a user can connect with Kyuubi server or not. For other secured
services that this user wants to interact with, he/she also needs to pass the authentication process of each service, for
instance, Hive Metastore, YARN, HDFS.

In $KYUUBI_HOME/conf/kyuubi-defaults.conf, specify kyuubi.authentication to one of the au-
thentication types listing below.

Using KERBEROS

If you are deploying Kyuubi with a kerberized Hadoop cluster, it is strongly recommended that kyuubi.
authentication should be set to KERBEROS too.

Kerberos is a network authentication protocol that provides the tools of authentication and strong cryptography over
the network. The Kerberos protocol uses strong cryptography so that a client or a server can prove its identity to its
server or client across an insecure network connection. After a client and server have used Kerberos to prove their
identity, they can also encrypt all of their communications to assure privacy and data integrity as they go about their
business.

The Kerberos architecture is centered around a trusted authentication service called the key distribution center, or
KDC. Users and services in a Kerberos environment are referred to as principals; each principal shares a secret, such
as a password, with the KDC.

Set following for KERBEROS mode:

For example,

• Configure with Kyuubi service principal

kyuubi.authentication=KERBEROS
kyuubi.kinit.principal=spark/kyuubi.apache.org@KYUUBI.APACHE.ORG
kyuubi.kinit.keytab=/path/to/kyuuib.keytab

• Start Kyuubi

$./bin/kyuubi start

• Kinit with user principal and connect using beeline

$ kinit -kt user.keytab user.principal

$ beeline -u "jdbc:hive2://localhost:10009/;principal=spark/kyuubi.apache.org@KYUUBI.
→˓APACHE.ORG"

6.3. Kyuubi Security Overview 83

Kyuubi, Release 1.3.0

6.3.2 Kinit Auxiliary Service

In order to work with a kerberos-enabled cluster, Kyuubi provides this kinit auxiliary service. It will periodically
re-kinit with to keep the Ticket Cache fresh.

Installing and Configuring the Kerberos Clients

Usually, Kerberos client is installed as default. You can validate it using klist tool.

$ klist -V
Kerberos 5 version 1.15.1

If the client is not installed, you should install it ahead based on the OS platform that you prepare to run Kyuubi.

krb5.conf is a configuration file for tuning up the creation of Kerberos ticket cache. The default location is /etc
on Linux, and we can use KRB5_CONFIG environmental variable to overwrite the location of the configuration file.

Replace or configure krb5.conf to point to the KDC.

Kerberos Ticket

Kerberos client is aimed to generate a Ticket Cache file. Then, Kyuubi can use this Ticket Cache to authenticate with
those kerberized services, e.g. HDFS, YARN, and Hive Metastore server, etc.

A Kerberos ticket cache contains a service and a client principal names, lifetime indicators, flags, and the credential
itself, e.g.

$ klist

Ticket cache: FILE:/tmp/krb5cc_5441
Default principal: spark/kyuubi.host.name@KYUUBI.APACHE.ORG

Valid starting Expires Service principal
2020-11-25T13:17:18 2020-11-26T13:17:18 krbtgt/KYUUBI.APACHE.ORG@KYUUBI.APACHE.ORG

renew until 2020-12-02T13:17:18

Kerberos credentials can be stored in Kerberos ticket cache. For example, /tmp/krb5cc_5441 in the above case.

They are valid for relatively short period. So, we always need to refresh it for long-running services like Kyuubi.

84 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Configurations

When hadoop.security.authentication is set to KERBEROS, in $HADOOP_CONF_DIR/core-site or
$KYUUBI_HOME/conf/kyuubi-defaults.conf, it indicates that we are targeting a secured cluster, then we
need to specify kyuubi.kinit.principal and kyuubi.kinit.keytab for authentication.

Kyuubi will use this principal to impersonate client users, so the cluster should enable it to do impersonation for
some particular user from some particular hosts.

For example,

hadoop.proxyuser.<user name in principal>.groups *
hadoop.proxyuser.<user name in principal>.hosts *

Further Readings

• Hadoop in Secure Mode

• Use Kerberos for authentication in Spark

6.3.3 Hadoop Credentials Manager

In order to pass the authentication of a kerberos secured hadoop cluster, kyuubi currently submits engines in two ways:

1. Submits with current kerberos user and extra SparkSubmit argument --proxy-user.

2. Submits with spark.kerberos.principal and spark.kerberos.keytab specified.

If engine is submitted with --proxy-user specified, its delegation tokens of hadoop cluster services are obtained
by current kerberos user and can not be renewed by itself.Thus, engine’s lifetime is limited by the lifetime of delegation
tokens.To remove this limitation, kyuubi renews delegation tokens at server side in Hadoop Credentials Manager.

Engine submitted with principal and keytab can renew delegation tokens by itself. But for implementation simplicity,
kyuubi server will also renew delegation tokens for it.

Configurations

Cluster Services

Kyuubi currently supports renew delegation tokens of Hadoop filesystems and Hive metastore servers.

6.3. Kyuubi Security Overview 85

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SecureMode.html
http://spark.apache.org/docs/latest/security.html#kerberos

Kyuubi, Release 1.3.0

Hadoop client configurations

Set HADOOP_CONF_DIR in $KYUUBI_HOME/conf/kyuubi-env.sh if it hasn’t been set yet, e.g.

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.
→˓sh

Extra Hadoop filesystems can be specified in $KYUUBI_HOME/conf/kyuubi-defaults.conf by kyuubi.
credentials.hadoopfs.uris in comma separated list.

Hive metastore configurations

Via kyuubi-defaults.conf

Specify Hive metastore configurations In $KYUUBI_HOME/conf/kyuubi-defaults.conf. Hadoop Creden-
tials Manager will load the configurations when initialized.

Via hive-site.xml

Place your copy of hive-site.xml into $KYUUBI_HOME/conf, Kyuubi will load this config file to its classpath.

This version of configuration has lower priority than those in $KYUUBI_HOME/conf/kyuubi-defaults.
conf.

Via JDBC Connection URL

Hive configurations specified in JDBC connection URL are ignored by Hadoop Credentials Manager as Hadoop Cre-
dentials Manager is initialized when Kyuubi server starts.

Credentials Renewal

6.3.4 ACL Management Guide

• Authorization Modes

– Storage-Based Authorization

– SQL-Standard Based Authorization

– Ranger Security Support

Authorization Modes

Three primary modes for Kyuubi authorization are available by Submarine Spark Security:

Storage-Based Authorization

Enabling Storage Based Authorization in the Hive Metastore Server uses the HDFS permissions to act as the
main source for verification and allows for consistent data and metadata authorization policy. This allows control over
metadata access by verifying if the user has permission to access corresponding directories on the HDFS. Similar with
HiveServer2, files and directories will be translated into hive metadata objects, such as dbs, tables, partitions, and
be protected from end user’s queries through Kyuubi.

Storage-Based Authorization offers users with Database, Table and Partition-level coarse-gained access control.

86 Chapter 6. High Availability

https://github.com/apache/submarine/tree/master/submarine-security/spark-security

Kyuubi, Release 1.3.0

SQL-Standard Based Authorization

Enabling SQL-Standard Based Authorization gives users more fine-gained control over access comparing with Storage
Based Authorization. Besides of the ability of Storage Based Authorization, SQL-Standard Based Authorization can
improve it to Views and Column-level. Unfortunately, Spark SQL does not support grant/revoke statements which
controls access, this might be done only through the HiveServer2. But it’s gratifying that Submarine Spark Security
makes Spark SQL be able to understand this fine-grain access control granted or revoked by Hive.

With Kyuubi, the SQL-Standard Based Authorization is guaranteed for the security configurations, metadata, and
storage information is preserved from end users.

Please refer to the Submarine Spark Security in the online documentation for an overview on how to configure SQL-
Standard Based Authorization for Spark SQL.

Ranger Security Support (Recommended)

Apache Ranger is a framework to enable, monitor and manage comprehensive data security across the Hadoop plat-
form but end before Spark or Spark SQL. The Submarine Spark Security enables Kyuubi with control access ability
reusing Ranger Plugin for Hive MetaStore . Apache Ranger makes the scope of existing SQL-Standard Based Autho-
rization expanded but without supporting Spark SQL. Submarine Spark Security sticks them together.

Please refer to the Submarine Spark Security in the online documentation for an overview on how to configure Ranger
for Spark SQL.

6.4 Client Documentation

6.4. Client Documentation 87

https://github.com/apache/submarine/tree/master/submarine-security/spark-security
https://github.com/apache/incubator-kyuubi
https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README
https://ranger.apache.org/
https://github.com/apache/submarine/tree/master/submarine-security/spark-security
https://cwiki.apache.org/confluence/display/RANGER/Ranger+Plugin+for+Hive+MetaStore
https://ranger.apache.org/
https://github.com/apache/submarine/tree/master/submarine-security/spark-security
https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README

Kyuubi, Release 1.3.0

6.4.1 Access Kyuubi with Hive JDBC and ODBC Drivers

Instructions

Kyuubi does not provide its own JDBC Driver so far, as it is fully compatible with Hive JDBC and ODBC drivers
that let you connect to popular Business Intelligence (BI) tools to query, analyze and visualize data though Spark SQL
engines.

Install Hive JDBC

For programing, the easiest way to get hive-jdbc is from the maven central. For example,

• maven

<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.3.8</version>

</dependency>

• sbt

libraryDependencies += "org.apache.hive" % "hive-jdbc" % "2.3.8"

• gradle

implementation group: 'org.apache.hive', name: 'hive-jdbc', version: '2.3.8'

For BI tools, please refer to Quick Start to check the guide for the BI tool used. If you find there is no specific document
for the BI tool that you are using, don’t worry, the configuration part for all BI tools are basically the same. Also, we
will appreciate if you can help us to improve the document.

JDBC URL

JDBC URLs have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<sparkConfs>#<[spark|hive]Vars>

Example

jdbc:hive2://localhost:10009/default;spark.sql.adaptive.enabled=true?spark.ui.
→˓enabled=false#var_x=y

88 Chapter 6. High Availability

https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc
../quick_start/index.html

Kyuubi, Release 1.3.0

Unsupported Hive Features

• Connect to HiveServer2 using HTTP transport. transportMode=http

6.5 Integrations

6.5.1 Kyuubi On Apache Kudu

What is Apache Kudu

A new addition to the open source Apache Hadoop ecosystem, Apache Kudu completes Hadoop’s storage
layer to enable fast analytics on fast data.

When you are reading this documentation, we suppose that you are not necessary to be familiar with Apache Kudu.
But at least, you have one running Kudu cluster which is able to be connected for you. And it is even better for you to
understand what Apache Kudu is capable with.

Anything missing on this page about Apache Kudu background knowledge, you can refer to its official website.

Why Kyuubi on Kudu

Basically, Kyuubi can take place of HiveServer2 as a multi tenant ad-hoc SQL on Hadoop solution, with the advantages
of speed and power coming from Spark SQL. You can run SQL queries towards both data source and Hive tables whose
data is secured only with computing resources you are authorized.

Spark SQL supports operating on a variety of data sources through the DataFrame interface. A DataFrame
can be operated on using relational transformations and can also be used to create a temporary view.
Registering a DataFrame as a temporary view allows you to run SQL queries over its data. This section
describes the general methods for loading and saving data using the Spark Data Sources and then goes
into specific options that are available for the built-in data sources.

In Kyuubi, we can register Kudu tables and other data source tables as Spark temporary views to enable federated
union queries across Hive, Kudu, and other data sources.

6.5. Integrations 89

https://kudu.apache.org/

Kyuubi, Release 1.3.0

Kudu Integration with Apache Spark

Before integrating Kyuubi with Kudu, we strongly suggest that you integrate and test Spark with Kudu first. You may
find the guide from Kudu’s online documentation – Kudu Integration with Spark

Kudu Integration with Kyuubi

Install Kudu Spark Dependency

Confirm your Kudu cluster version and download the corresponding kudu spark dependency library, such as
org.apache.kudu:kudu-spark3_2.12-1.14.0 to $SPARK_HOME/jars.

Start Kyuubi

Now, you can start Kyuubi server with this kudu embedded Spark distribution.

Start Beeline Or Other Client You Prefer

bin/beeline -u 'jdbc:hive2://<host>:<port>/;principal=<if kerberized>;#spark.yarn.
→˓queue=kyuubi_test'

Register Kudu table as Spark Temporary view

CREATE TEMPORARY VIEW kudutest
USING kudu
options (

kudu.master "ip1:port1,ip2:port2,...",
kudu.table "kudu::test.testtbl")

0: jdbc:hive2://spark5.jd.163.org:10009/> show tables;
19/07/09 15:28:03 INFO ExecuteStatementInClientMode: Running query 'show tables' with
→˓1104328b-515c-4f8b-8a68-1c0b202bc9ed
19/07/09 15:28:03 INFO KyuubiSparkUtil$: Application application_1560304876299_
→˓3805060 has been activated
19/07/09 15:28:03 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 1 jobs before optimization
19/07/09 15:28:03 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 1 jobs without optimization
19/07/09 15:28:03 INFO DAGScheduler: Asked to cancel job group 1104328b-515c-4f8b-
→˓8a68-1c0b202bc9ed
+-----------+-----------------------------+--------------+--+
| database | tableName | isTemporary |
+-----------+-----------------------------+--------------+--+
| kyuubi | hive_tbl | false |
| | kudutest | true |
+-----------+-----------------------------+--------------+--+
2 rows selected (0.29 seconds)

90 Chapter 6. High Availability

https://kudu.apache.org/docs/developing.html#_kudu_integration_with_spark
https://repo1.maven.org/maven2/org/apache/kudu/kudu-spark3_2.12/1.14.0/kudu-spark3_2.12-1.14.0.jar

Kyuubi, Release 1.3.0

Query Kudu Table

0: jdbc:hive2://spark5.jd.163.org:10009/> select * from kudutest;
19/07/09 15:25:17 INFO ExecuteStatementInClientMode: Running query 'select * from
→˓kudutest' with ac3e8553-0d79-4c57-add1-7d3ffe34ba16
19/07/09 15:25:17 INFO KyuubiSparkUtil$: Application application_1560304876299_
→˓3805060 has been activated
19/07/09 15:25:17 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 3 jobs before optimization
19/07/09 15:25:17 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 3 jobs without optimization
19/07/09 15:25:17 INFO DAGScheduler: Asked to cancel job group ac3e8553-0d79-4c57-
→˓add1-7d3ffe34ba16
+---------+---------------+----------------+--+
| userid | sharesetting | notifysetting |
+---------+---------------+----------------+--+
1	1	1
5	5	5
2	2	2
3	3	3
4	4	4
+---------+---------------+----------------+--+
5 rows selected (1.083 seconds)

Join Kudu table with Hive table

0: jdbc:hive2://spark5.jd.163.org:10009/> select t1.*, t2.* from hive_tbl t1 join
→˓kudutest t2 on t1.userid=t2.userid+1;
19/07/09 15:31:01 INFO ExecuteStatementInClientMode: Running query 'select t1.*, t2.*
→˓from hive_tbl t1 join kudutest t2 on t1.userid=t2.userid+1' with 6982fa5c-29fa-49be-
→˓a5bf-54c935bbad18
19/07/09 15:31:01 INFO KyuubiSparkUtil$: Application application_1560304876299_
→˓3805060 has been activated
<omitted lines.... >
19/07/09 15:31:01 INFO DAGScheduler: Asked to cancel job group 6982fa5c-29fa-49be-
→˓a5bf-54c935bbad18
+---------+---------------+----------------+---------+---------------+----------------
→˓+--+
| userid | sharesetting | notifysetting | userid | sharesetting | notifysetting
→˓|
+---------+---------------+----------------+---------+---------------+----------------
→˓+--+
| 2 | 2 | 2 | 1 | 1 | 1
→˓|
| 3 | 3 | 3 | 2 | 2 | 2
→˓|
| 4 | 4 | 4 | 3 | 3 | 3
→˓|
+---------+---------------+----------------+---------+---------------+----------------
→˓+--+
3 rows selected (1.63 seconds)

6.5. Integrations 91

Kyuubi, Release 1.3.0

Insert to Kudu table

You should notice that only INSERT INTO is supported by Kudu, OVERWRITE data is not supported

0: jdbc:hive2://spark5.jd.163.org:10009/> insert overwrite table kudutest select *
→˓from hive_tbl;
19/07/09 15:35:29 INFO ExecuteStatementInClientMode: Running query 'insert overwrite
→˓table kudutest select * from hive_tbl' with 1afdb791-1aa7-4ceb-8ba8-ff53c17615d1
19/07/09 15:35:29 INFO KyuubiSparkUtil$: Application application_1560304876299_
→˓3805060 has been activated
19/07/09 15:35:30 ERROR ExecuteStatementInClientMode:
Error executing query as bdms_hzyaoqin,
insert overwrite table kudutest select * from hive_tbl
Current operation state RUNNING,
java.lang.UnsupportedOperationException: overwrite is not yet supported

at org.apache.kudu.spark.kudu.KuduRelation.insert(DefaultSource.scala:424)
at org.apache.spark.sql.execution.datasources.InsertIntoDataSourceCommand.

→˓run(InsertIntoDataSourceCommand.scala:42)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult

→˓$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.

→˓sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.

→˓executeCollect(commands.scala:79)
at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190)
at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:190)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
at org.apache.spark.sql.execution.SQLExecution$.

→˓withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:190)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:75)
at org.apache.spark.sql.SparkSQLUtils$.toDataFrame(SparkSQLUtils.scala:39)
at org.apache.kyuubi.operation.statement.ExecuteStatementInClientMode.

→˓execute(ExecuteStatementInClientMode.scala:152)
at org.apache.kyuubi.operation.statement.ExecuteStatementOperation$$anon1

→˓$anon$2.run(ExecuteStatementOperation.scala:74)
at org.apache.kyuubi.operation.statement.ExecuteStatementOperation$$anon1

→˓$anon$2.run(ExecuteStatementOperation.scala:70)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.

→˓java:1698)
at org.apache.kyuubi.operation.statement.ExecuteStatementOperation$$anon$1.

→˓run(ExecuteStatementOperation.scala:70)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

→˓java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

→˓java:617)
at java.lang.Thread.run(Thread.java:745)

19/07/09 15:35:30 INFO DAGScheduler: Asked to cancel job group 1afdb791-1aa7-4ceb-
→˓8ba8-ff53c17615d1

92 Chapter 6. High Availability

Kyuubi, Release 1.3.0

0: jdbc:hive2://spark5.jd.163.org:10009/> insert into table kudutest select * from
→˓hive_tbl;
19/07/09 15:36:26 INFO ExecuteStatementInClientMode: Running query 'insert into table
→˓kudutest select * from hive_tbl' with f7460400-0564-4f98-93b6-ad76e579e7af
19/07/09 15:36:26 INFO KyuubiSparkUtil$: Application application_1560304876299_
→˓3805060 has been activated
<omitted lines ...>
19/07/09 15:36:27 INFO DAGScheduler: ResultStage 36 (foreachPartition at KuduContext.
→˓scala:332) finished in 0.322 s
19/07/09 15:36:27 INFO DAGScheduler: Job 36 finished: foreachPartition at KuduContext.
→˓scala:332, took 0.324586 s
19/07/09 15:36:27 INFO KuduContext: completed upsert ops: duration histogram: 33.
→˓333333333333336%: 2ms, 66.66666666666667%: 64ms, 100.0%: 102ms, 100.0%: 102ms
19/07/09 15:36:27 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 1 jobs before optimization
19/07/09 15:36:27 INFO ExecuteStatementInClientMode: Executing query in incremental
→˓mode, running 1 jobs without optimization
19/07/09 15:36:27 INFO DAGScheduler: Asked to cancel job group f7460400-0564-4f98-
→˓93b6-ad76e579e7af
+---------+--+
| Result |
+---------+--+
+---------+--+
No rows selected (0.611 seconds)

References

https://kudu.apache.org/ https://kudu.apache.org/docs/developing.html#_kudu_integration_with_spark https://github.
com/apache/incubator-kyuubi https://spark.apache.org/docs/latest/sql-data-sources.html

6.6 Monitoring

In this section, you will learn how to monitor Kyuubi with logging, metrics etc..

6.6. Monitoring 93

https://kudu.apache.org/
https://kudu.apache.org/docs/developing.html#_kudu_integration_with_spark
https://github.com/apache/incubator-kyuubi
https://github.com/apache/incubator-kyuubi
https://spark.apache.org/docs/latest/sql-data-sources.html

Kyuubi, Release 1.3.0

6.6.1 Monitoring Kyuubi - Logging System

Kyuubi uses Apache Log4j for logging.

In general, there are mainly three components in the Kyuubi architecture that will produce component-oriented logs
to help you trace breadcrumbs for SQL workloads against Kyuubi.

• Logs of Kyuubi Server

• Logs of Kyuubi Engines

• Operation logs

In addition, a Kyuubi deployment for production usually relies on some other external systems. For example, both
Kyuubi servers and engines will use Apache Zookeeper for service discovery. The instructions for external system
loggings will not be included in this article.

Logs of Kyuubi Server

Logs of Kyuubi Server show us the activities of the server instance including how start/stop, how does it response
client requests, etc.

Configuring Server Logging

Basic Configurations

You can configure it by adding a log4j.properties file in the $KYUUBI_HOME/conf directory. One way to
start is to make a copy of the existing log4j.properties.template located there.

For example,

cd $KYUUBI_HOME
cp conf/log4j.properties.template conf/log4j.properties

With or without the above step, by default the server logging will redirect the logs to a file
named kyuubi-${env:USER}-org.apache.kyuubi.server.KyuubiServer-${env:HOSTNAME}.
out under the directory of $KYUUBI_HOME/logs.

For example, you can easily find where the server log goes when staring a Kyuubi server from the console output.

$ export SPARK_HOME=/Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2
$ cd ~/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin
$ bin/kyuubi start

Starting Kyuubi Server from /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-
→˓kyuubi-1.3.1-incubating-bin
Warn: Not find kyuubi environment file /Users/kentyao/svn-kyuubi/v1.3.1-incubating-
→˓rc0/apache-kyuubi-1.3.1-incubating-bin/conf/kyuubi-env.sh, using default ones...
JAVA_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_251.jdk/Contents/Home
KYUUBI_HOME: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin
KYUUBI_CONF_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/conf
KYUUBI_LOG_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/logs
KYUUBI_PID_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-
→˓incubating-bin/pid

(continues on next page)

94 Chapter 6. High Availability

https://logging.apache.org/
https://zookeeper.apache.org/

Kyuubi, Release 1.3.0

(continued from previous page)

KYUUBI_WORK_DIR_ROOT: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.
→˓3.1-incubating-bin/work
SPARK_HOME: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2
SPARK_CONF_DIR: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2/conf
HADOOP_CONF_DIR:
Starting org.apache.kyuubi.server.KyuubiServer, logging to /Users/kentyao/svn-kyuubi/
→˓v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/logs/kyuubi-kentyao-org.
→˓apache.kyuubi.server.KyuubiServer-hulk.local.out
Welcome to

__ __ __
/\ \/\ \ /\ \ __
\ \ \/'/' __ __ __ __ __ __\ \ ____/_\
\ \ , < /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
\ \ \\`\\ \ _\ \ \ _\ \ \ _\ \\ \ \L\ \ \ \
\ _\ _\/`____ \ ____/\ ____/ \ _,__/\ _\
\/_/\/_/`/___/> \/___/ \/___/ \/___/ \/_/

/___/
\/__/

KYUUBI_LOG_DIR

You may also notice that there is an environment variable called KYUUBI_LOG_DIR in the above example.

KYUUBI_LOG_DIR determines which folder we want to put our server log files.

For example, the below command will locate the log files to /Users/kentyao/tmp.

$ mkdir /Users/kentyao/tmp
$ KYUUBI_LOG_DIR=/Users/kentyao/tmp bin/kyuubi start

Starting org.apache.kyuubi.server.KyuubiServer, logging to /Users/kentyao/tmp/kyuubi-
→˓kentyao-org.apache.kyuubi.server.KyuubiServer-hulk.local.out

KYUUBI_MAX_LOG_FILES

KYUUBI_MAX_LOG_FILES controls how many log files will be remained after a Kyuubi server reboots.

Custom Log4j Settings

Taking control of $KYUUBI_HOME/conf/log4j.propertieswill also give us the ability of customizing server
logging as we want.

For example, we can disable the console appender and enable the file appender like,

log4j.rootCategory=INFO, FA
log4j.appender.FA=org.apache.log4j.FileAppender
log4j.appender.FA.append=false
log4j.appender.FA.file=log/dummy.log
log4j.appender.FA.layout=org.apache.log4j.PatternLayout
log4j.appender.FA.layout.ConversionPattern=%d{HH:mm:ss.SSS} %t %p %c{2}: %m%n
log4j.appender.FA.Threshold=DEBUG

Then everything goes to log/dummy.log.

6.6. Monitoring 95

Kyuubi, Release 1.3.0

Logs of Spark SQL Engine

Spark SQL Engine is one type of Kyuubi Engines and also a typical Spark application. Thus, its logs mainly contain
the logs of a Spark Driver. Meanwhile, it also includes how all the services of an engine start/stop, how does it response
the incoming calls from Kyuubi servers, etc.

In general, when an exception occurs, we are able to find more information and clues in the engine’s logs.

Configuring Engine Logging

Please refer to Apache Spark online documentation -Configuring Logging for instructions.

Where to Find the Engine Log

The engine logs locate differently based on the deploy mode and the cluster manager. When using local back-
end or client deploy mode for other cluster managers, such as YARN, you can find the whole engine log
in $KYUUBI_WORK_DIR_ROOT/${session username}/kyuubi-spark-sql-engine.log.${num}.
Different session users have different folders to group all live and historical engine logs. Each engine will have one
and only engine log. When using cluster deploy mode, the local engine logs only contain very little information,
the main parts of engine logs are on the remote driver side, e.g. for YARN cluster, they are in ApplicationMasters’ log.

Operation Logs

Operation log will show how SQL queries are executed, such as query planning, execution, and statistic reports.

Operation logs can reveal directly to end-users how their queries are being executed on the server/engine-side, includ-
ing some process-oriented information, and why their queries are slow or in error.

For example, when you, as an end-user, use beeline to connect a Kyuubi server and execute query like below.

bin/beeline -u 'jdbc:hive2://10.242.189.214:2181/;serviceDiscoveryMode=zooKeeper;
→˓zooKeeperNamespace=kyuubi' -n kent -e 'select * from src;'

You will both get the final results and the corresponding operation logs telling you the journey of the query.

0: jdbc:hive2://10.242.189.214:2181/> select * from src;
2021-10-27 17:00:19.399 INFO operation.ExecuteStatement: Processing kent's
→˓query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: INITIALIZED_STATE -> PENDING_STATE,
→˓statement: select * from src
2021-10-27 17:00:19.401 INFO operation.ExecuteStatement: Processing kent's
→˓query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: PENDING_STATE -> RUNNING_STATE,
→˓statement: select * from src
2021-10-27 17:00:19.400 INFO operation.ExecuteStatement: Processing kent's
→˓query[26e169a2-6c06-450a-b758-e577ac673d70]: INITIALIZED_STATE -> PENDING_STATE,
→˓statement: select * from src
2021-10-27 17:00:19.401 INFO operation.ExecuteStatement: Processing kent's
→˓query[26e169a2-6c06-450a-b758-e577ac673d70]: PENDING_STATE -> RUNNING_STATE,
→˓statement: select * from src
2021-10-27 17:00:19.402 INFO operation.ExecuteStatement:

Spark application name: kyuubi_USER_kent_6d4b5e53-ddd2-420c-b04f-
→˓326fb2b17e18

application ID: local-1635318669122
application web UI: http://10.242.189.214:50250
master: local[*]

(continues on next page)

96 Chapter 6. High Availability

https://spark.apache.org/docs/latest/configuration.html#configuring-logging

Kyuubi, Release 1.3.0

(continued from previous page)

deploy mode: client
version: 3.2.0

Start time: 2021-10-27T15:11:08.416
User: kent

2021-10-27 17:00:19.408 INFO metastore.HiveMetaStore: 6: get_database: default
2021-10-27 17:00:19.408 INFO HiveMetaStore.audit: ugi=kent ip=unknown-ip-
→˓addr cmd=get_database: default
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.internal.ss.authz.
→˓settings.applied.marker does not exist
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.stats.jdbc.timeout
→˓does not exist
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.stats.retries.wait
→˓does not exist
2021-10-27 17:00:19.424 INFO metastore.HiveMetaStore: 6: Opening raw store with
→˓implementation class:org.apache.hadoop.hive.metastore.ObjectStore
2021-10-27 17:00:19.425 INFO metastore.ObjectStore: ObjectStore, initialize called
2021-10-27 17:00:19.430 INFO metastore.MetaStoreDirectSql: Using direct SQL,
→˓underlying DB is DERBY
2021-10-27 17:00:19.431 INFO metastore.ObjectStore: Initialized ObjectStore
2021-10-27 17:00:19.434 INFO metastore.HiveMetaStore: 6: get_table : db=default
→˓tbl=src
2021-10-27 17:00:19.434 INFO HiveMetaStore.audit: ugi=kent ip=unknown-ip-
→˓addr cmd=get_table : db=default tbl=src
2021-10-27 17:00:19.449 INFO metastore.HiveMetaStore: 6: get_table : db=default
→˓tbl=src
2021-10-27 17:00:19.450 INFO HiveMetaStore.audit: ugi=kent ip=unknown-ip-
→˓addr cmd=get_table : db=default tbl=src
2021-10-27 17:00:19.510 INFO operation.ExecuteStatement: Processing kent's
→˓query[26e169a2-6c06-450a-b758-e577ac673d70]: RUNNING_STATE -> RUNNING_STATE,
→˓statement: select * from src
2021-10-27 17:00:19.544 INFO memory.MemoryStore: Block broadcast_5 stored as values
→˓in memory (estimated size 343.6 KiB, free 408.6 MiB)
2021-10-27 17:00:19.558 INFO memory.MemoryStore: Block broadcast_5_piece0 stored as
→˓bytes in memory (estimated size 33.5 KiB, free 408.5 MiB)
2021-10-27 17:00:19.559 INFO spark.SparkContext: Created broadcast 5 from
2021-10-27 17:00:19.600 INFO mapred.FileInputFormat: Total input files to process : 1
2021-10-27 17:00:19.627 INFO spark.SparkContext: Starting job: collect at
→˓ExecuteStatement.scala:97
2021-10-27 17:00:19.629 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-
→˓b758-e577ac673d70]: Job 5 started with 1 stages, 1 active jobs running
2021-10-27 17:00:19.631 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-
→˓b758-e577ac673d70]: Stage 5 started with 1 tasks, 1 active stages running
2021-10-27 17:00:19.713 INFO kyuubi.SQLOperationListener: Finished stage: Stage(5, 0);
→˓ Name: 'collect at ExecuteStatement.scala:97'; Status: succeeded; numTasks: 1;
→˓Took: 83 msec
2021-10-27 17:00:19.713 INFO scheduler.DAGScheduler: Job 5 finished: collect at
→˓ExecuteStatement.scala:97, took 0.085454 s
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: task runtime:(count: 1,
→˓mean: 78.000000, stdev: 0.000000, max: 78.000000, min: 78.000000)
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: 78.0 ms 78.
→˓0 ms 78.0 ms 78.0 ms 78.0 ms 78.0 ms 78.0
→˓ms 78.0 ms 78.0 ms
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: shuffle bytes
→˓written:(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%(continues on next page)

6.6. Monitoring 97

Kyuubi, Release 1.3.0

(continued from previous page)

2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 0.0 B 0.0
→˓B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0
→˓B 0.0 B
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: fetch wait time:(count: 1,
→˓ mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 0.0 ms 0.0
→˓ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0
→˓ms 0.0 ms
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: remote bytes read:(count:
→˓1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 0.0 B 0.0
→˓B 0.0 B 0.0 B 0.0 B 0.0 B 0.0 B 0.0
→˓B 0.0 B
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: task result size:(count:
→˓1, mean: 1471.000000, stdev: 0.000000, max: 1471.000000, min: 1471.000000)
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 1471.0
→˓B 1471.0 B 1471.0 B 1471.0 B 1471.0 B 1471.0
→˓B 1471.0 B 1471.0 B 1471.0 B
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: executor (non-fetch) time
→˓pct: (count: 1, mean: 61.538462, stdev: 0.000000, max: 61.538462, min: 61.538462)
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: 62 % 62
→˓% 62 % 62 % 62 % 62 % 62 % 62 % 62
→˓%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: fetch wait time pct:
→˓(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 0 % 0
→˓% 0 % 0 % 0 % 0 % 0 % 0 % 0
→˓%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: other time pct: (count: 1,
→˓ mean: 38.461538, stdev: 0.000000, max: 38.461538, min: 38.461538)
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 0% 5
→˓% 10% 25% 50% 75% 90% 95% 100%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 38 % 38
→˓% 38 % 38 % 38 % 38 % 38 % 38 % 38
→˓%
2021-10-27 17:00:19.719 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-
→˓b758-e577ac673d70]: Job 5 succeeded, 0 active jobs running
2021-10-27 17:00:19.728 INFO codegen.CodeGenerator: Code generated in 12.277091 ms
2021-10-27 17:00:19.729 INFO operation.ExecuteStatement: Processing kent's
→˓query[26e169a2-6c06-450a-b758-e577ac673d70]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: select * from src, time taken: 0.328 seconds
2021-10-27 17:00:19.731 INFO operation.ExecuteStatement: Query[fb5f57d2-2b50-4a46-
→˓961b-3a5c6a2d2597] in FINISHED_STATE
2021-10-27 17:00:19.731 INFO operation.ExecuteStatement: Processing kent's
→˓query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: RUNNING_STATE -> FINISHED_STATE,
→˓statement: select * from src, time taken: 0.33 seconds
+---+--------------------+

(continues on next page)

98 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

| version() | DATE '2021-10-27' |
+---+--------------------+
| 3.2.0 5d45a415f3a29898d92380380cfd82bfc7f579ea | 2021-10-27 |
+---+--------------------+
1 row selected (0.341 seconds)

Further Readings

• Monitoring Kyuubi - Events System

• Monitoring Kyuubi - Server Metrics

• Trouble Shooting

• Spark Online Documentation

– Monitoring and Instrumentation

6.6.2 Monitoring Kyuubi - Server Metrics

Kyuubi has a configurable metrics system based on the Dropwizard Metrics Library. This allows users to report
Kyuubi metrics to a variety of kyuubi.metrics.reporters. The metrics provide instrumentation for specific
activities and Kyuubi server.

Configurations

The metrics system is configured via $KYUUBI_HOME/conf/kyuubi-defaults.conf.

Metrics

These metrics include:

6.6.3 Trouble Shooting

Common Issues

java.lang.UnsupportedClassVersionError .. Unsupported major.minor version 52.0

6.6. Monitoring 99

http://spark.apache.org/docs/latest/monitoring.html
https://metrics.dropwizard.io/

Kyuubi, Release 1.3.0

Exception in thread "main" java.lang.UnsupportedClassVersionError: org/apache/kyuubi/
→˓server/KyuubiServer : Unsupported major.minor version 52.0

at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:803)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:442)
at java.net.URLClassLoader.access$100(URLClassLoader.java:64)
at java.net.URLClassLoader$1.run(URLClassLoader.java:354)
at java.net.URLClassLoader$1.run(URLClassLoader.java:348)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:347)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:312)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:482)

Firstly, you should check the version of Java JRE used to run Kyuubi is actually matched with the version of Java
compiler used to build Kyuubi.

$ java -version
java version "1.7.0_171"
OpenJDK Runtime Environment (rhel-2.6.13.2.el7-x86_64 u171-b01)
OpenJDK 64-Bit Server VM (build 24.171-b01, mixed mode)

$ cat RELEASE
Kyuubi 1.0.0-SNAPSHOT (git revision 39e5da5) built for
Java 1.8.0_251
Scala 2.12
Spark 3.0.1
Hadoop 2.7.4
Hive 2.3.7
Build flags:

To fix this problem you should export JAVA_HOME with a compatible one in conf/kyuubi-env.sh

echo "export JAVA_HOME=/path/to/jdk1.8.0_251" >> conf/kyuubi-env.sh

org.apache.spark.SparkException: When running with master ‘yarn’ either HADOOP_CONF_DIR or
YARN_CONF_DIR must be set in the environment

Exception in thread "main" org.apache.spark.SparkException: When running with master
→˓'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

at org.apache.spark.deploy.SparkSubmitArguments.error(SparkSubmitArguments.
→˓scala:630)

at org.apache.spark.deploy.SparkSubmitArguments.
→˓validateSubmitArguments(SparkSubmitArguments.scala:270)

at org.apache.spark.deploy.SparkSubmitArguments.
→˓validateArguments(SparkSubmitArguments.scala:233)

at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.
→˓scala:119)

at org.apache.spark.deploy.SparkSubmit$$anon$2$$anon$3.<init>(SparkSubmit.
→˓scala:990)

at org.apache.spark.deploy.SparkSubmit$$anon$2.parseArguments(SparkSubmit.
→˓scala:990)

at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:85)
(continues on next page)

100 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.
→˓scala:1007)

at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

When Kyuubi gets the spark.master=yarn, HADOOP_CONF_DIR should also be exported in
$KYUUBI_HOME/conf/kyuubi-env.sh.

To fix this problem you should export HADOOP_CONF_DIR to the folder that contains the hadoop client settings in
conf/kyuubi-env.sh.

echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> conf/kyuubi-env.sh

javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid creden-
tials provided (Mechanism level: Failed to find any Kerberos tgt)];

org.apache.hadoop.security.AccessControlException: Permission denied: user=hzyanqin, ac-
cess=WRITE, inode=”/user”:hdfs:hdfs:drwxr-xr-x

org.apache.hadoop.security.AccessControlException: Permission denied: user=hzyanqin,
→˓access=WRITE, inode="/user":hdfs:hdfs:drwxr-xr-x

at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.
→˓check(FSPermissionChecker.java:350)

at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.
→˓checkPermission(FSPermissionChecker.java:251)

at org.apache.ranger.authorization.hadoop.RangerHdfsAuthorizer
→˓$RangerAccessControlEnforcer.checkPermission(RangerHdfsAuthorizer.java:306)

at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.
→˓checkPermission(FSPermissionChecker.java:189)

at org.apache.hadoop.hdfs.server.namenode.FSDirectory.
→˓checkPermission(FSDirectory.java:1767)

at org.apache.hadoop.hdfs.server.namenode.FSDirectory.
→˓checkPermission(FSDirectory.java:1751)

at org.apache.hadoop.hdfs.server.namenode.FSDirectory.
→˓checkAncestorAccess(FSDirectory.java:1710)

at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.
→˓java:60)

at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.
→˓java:3062)

at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.
→˓mkdirs(NameNodeRpcServer.java:1156)

at org.apache.hadoop.hdfs.protocolPB.
→˓ClientNamenodeProtocolServerSideTranslatorPB.
→˓mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:652)

at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos
→˓$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)

at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.
→˓call(ProtobufRpcEngine.java:503)

at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:871)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:817)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.

→˓java:1893) (continues on next page)

6.6. Monitoring 101

Kyuubi, Release 1.3.0

(continued from previous page)

at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2606)

at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.

→˓newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.

→˓newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.

→˓java:106)
at org.apache.hadoop.ipc.RemoteException.

→˓unwrapRemoteException(RemoteException.java:73)
at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3007)
at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2975)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.

→˓doCall(DistributedFileSystem.java:1047)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.

→˓doCall(DistributedFileSystem.java:1043)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.

→˓java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.

→˓mkdirsInternal(DistributedFileSystem.java:1061)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.

→˓java:1036)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:1881)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:600)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:441)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.

→˓scala:876)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:196)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.

→˓start(YarnClientSchedulerBackend.scala:60)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.

→˓scala:201)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:555)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2574)
at org.apache.spark.sql.SparkSession$Builder.$anonfun$getOrCreate

→˓$2(SparkSession.scala:934)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.

→˓scala:928)
at org.apache.kyuubi.engine.spark.SparkSQLEngine$.createSpark(SparkSQLEngine.

→˓scala:72)
at org.apache.kyuubi.engine.spark.SparkSQLEngine$.main(SparkSQLEngine.

→˓scala:101)
at org.apache.kyuubi.engine.spark.SparkSQLEngine.main(SparkSQLEngine.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

→˓java:62)
at sun.reflect.DelegatingMethodAccessorImpl.

→˓invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.

→˓scala:52)
at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$

→˓$runMain(SparkSubmit.scala:928)
at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:165)

(continues on next page)

102 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:163)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.

→˓java:1746)
at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:163)
at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.

→˓scala:1007)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

The user do not have permission to create to Hadoop home dir, which is /user/hzyanqin in the case above.

To fix this problem you need to create this directory first and grant ACL permission for hzyanqin.

org.apache.thrift.TApplicationException: Invalid method name: ‘get_table_req’

Caused by: org.apache.thrift.TApplicationException: Invalid method name: 'get_table_
→˓req'

at org.apache.thrift.TServiceClient.receiveBase(TServiceClient.java:79)
at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.recv_get_

→˓table_req(ThriftHiveMetastore.java:1567)
at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.get_table_

→˓req(ThriftHiveMetastore.java:1554)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.

→˓getTable(HiveMetaStoreClient.java:1350)
at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.

→˓getTable(SessionHiveMetaStoreClient.java:127)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

→˓java:62)
at sun.reflect.DelegatingMethodAccessorImpl.

→˓invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.

→˓invoke(RetryingMetaStoreClient.java:173)
at com.sun.proxy.$Proxy37.getTable(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

→˓java:62)
at sun.reflect.DelegatingMethodAccessorImpl.

→˓invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient$SynchronizedHandler.

→˓invoke(HiveMetaStoreClient.java:2336)
at com.sun.proxy.$Proxy37.getTable(Unknown Source)
at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1274)
... 93 more

This error means that you are using incompatible version of Hive metastore client to connect the Hive metastore server.

To fix this problem you could use a compatible version of Hive client by configuring spark.sql.hive.
metastore.jars and spark.sql.hive.metastore.version at Spark side.

6.6. Monitoring 103

Kyuubi, Release 1.3.0

hive.server2.thrift.max.worker.threads

Unexpected end of file when reading from HS2 server. The root cause might be too many
→˓concurrent connections. Please ask the administrator to check the number of active
→˓connections, and adjust hive.server2.thrift.max.worker.threads if applicable.
Error: org.apache.thrift.transport.TTransportException (state=08S01,code=0)

In Kyuubi, we should increase kyuubi.frontend.min.worker.threads instead of hive.server2.
thrift.max.worker.threads

Failed to create function using jar

CREATE TEMPORARY FUNCTION TEST AS 'com.netease.UDFTest' using jar 'hdfs:///
tmp/udf.jar'

Error operating EXECUTE_STATEMENT: org.apache.spark.sql.AnalysisException: Can not
→˓load class 'com.netease.UDFTest' when registering the function 'test', please make
→˓sure it is on the classpath;

at org.apache.spark.sql.catalyst.catalog.SessionCatalog.$anonfun
→˓$registerFunction$1(SessionCatalog.scala:1336)

at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.

→˓registerFunction(SessionCatalog.scala:1333)
at org.apache.spark.sql.execution.command.CreateFunctionCommand.run(functions.

→˓scala:82)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult

→˓$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.

→˓sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.

→˓executeCollect(commands.scala:79)
at org.apache.spark.sql.Dataset.$anonfun$logicalPlan$1(Dataset.scala:229)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3618)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId

→˓$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.

→˓withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId

→˓$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.

→˓withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:229)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:607)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:602)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.org$apache$kyuubi

→˓$engine$spark$operation$ExecuteStatement$$executeStatement(ExecuteStatement.
→˓scala:64)

at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.
→˓run(ExecuteStatement.scala:80)

at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
(continues on next page)

104 Chapter 6. High Availability

Kyuubi, Release 1.3.0

(continued from previous page)

at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

→˓java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

→˓java:617)
at java.lang.Thread.run(Thread.java:745)

If you get this exception when creating a function, you can check your JDK version. You should update JDK
to JDK1.8.0_121 and later, since JDK1.8.0_121 fix a security issue Additional access restrictions for URLClass-
Loader.newInstance.

Failed to start Spark 3.1 with error msg ‘Cannot modify the value of a Spark config’

Here is the error message

Caused by: org.apache.spark.sql.AnalysisException: Cannot modify the value of a Spark
→˓config: spark.yarn.queue

at org.apache.spark.sql.RuntimeConfig.requireNonStaticConf(RuntimeConfig.
→˓scala:156)

at org.apache.spark.sql.RuntimeConfig.set(RuntimeConfig.scala:40)
at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.$anonfun

→˓$openSession$2(SparkSQLSessionManager.scala:68)
at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.$anonfun

→˓$openSession$2$adapted(SparkSQLSessionManager.scala:56)
at scala.collection.immutable.Map$Map4.foreach(Map.scala:236)
at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.

→˓openSession(SparkSQLSessionManager.scala:56)
... 12 more

This is because Spark-3.1 will check the config which you set and throw exception if the config is static or used in
other module (e.g. yarn/core).

You can add a config spark.sql.legacy.setCommandRejectsSparkCoreConfs=false in
spark-defaults.conf to disable this behavior.

6.6. Monitoring 105

https://www.oracle.com/java/technologies/javase/8u121-relnotes.html
https://www.oracle.com/java/technologies/javase/8u121-relnotes.html

Kyuubi, Release 1.3.0

6.7 SQL References

This part describes the use of the SQL References in Kyuubi, including lists of the available extension, data types and
functions for use in SQL commands.

6.7.1 Auxiliary SQL extension for Spark SQL

Kyuubi provides SQL extension out of box. Due to the version compatibility with Apache Spark, currently we only
support Apache Spark branch-3.1 (i.e 3.1.1 and 3.1.2). And don’t worry, Kyuubi will support the new Apache Spark
version in the future. Thanks to the adaptive query execution framework (AQE), Kyuubi can do these optimizations.

What feature does Kyuubi SQL extension provide

• merging small files automatically

Small files is a long time issue with Apache Spark. Kyuubi can merge small files by adding an extra shuffle.
Currently, Kyuubi supports handle small files with datasource table and hive table, and also Kyuubi support
optimize dynamic partition insertion. For example, a common write query INSERT INTO TABLE $table1
SELECT * FROM $table2, Kyuubi will introduce an extra shuffle before write and then the small files will
go away.

• insert shuffle node before Join to make AQE OptimizeSkewedJoin work

In current implementation, Apache Spark can only optimize skewed join by the standard join which means a join
must have two sort and shuffle node. However, in complex scenario this assuming will be broken easily. Kyuubi
can guarantee the join is standard by adding an extra shuffle node before join. So that, OptimizeSkewedJoin can
work better.

• stage level config isolation in AQE

As we know, spark.sql.adaptive.advisoryPartitionSizeInBytes is a key config in Apache
Spark AQE. It controls how big data size per-task should handle during shuffle, so we always use a 64MB or a
smaller value to make parallelism enough. However, in general, we expect a file is big enough like 256MB or
512MB. Kyuubi can make the config isolation to solve the conflict so that we can make staging partition data
size small and last partition data size big.

106 Chapter 6. High Availability

Kyuubi, Release 1.3.0

How to use Kyuubi SQL extension

1. Check the matrix that if you are using the supported Spark version, and find the corresponding Kyuubi Spark
SQL Extension jar

2. Get the Kyuubi Spark SQL Extension jar

1. Each Kyuubi binary release tarball only contains one default version of Kyuubi Spark SQL Extension jar,
if you are looking for such version, you can find it under $KYUUBI_HOME/extension

2. All supported versions of Kyuubi Spark SQL Extension jar will be deployed to Maven Central

3. If you like, you can compile Kyuubi Spark SQL Extension jar by yourself, please activate the correspond-
ing Maven’s profile on you compile command, i.e. you can get Kyuubi Spark SQL Extension jar for Spark
3.1 under dev/kyuubi-extension-spark-3-1/target when compile with -Pspark-3.1

3. Put the Kyuubi Spark SQL extension jar kyuubi-extension-spark-*.jar into $SPARK_HOME/jars

4. Enable KyuubiSparkSQLExtension, i.e. add a config into $SPARK_HOME/conf/
spark-defaults.conf, spark.sql.extensions=org.apache.kyuubi.sql.
KyuubiSparkSQLExtension

Now, you can enjoy the Kyuubi SQL Extension, and also Kyuubi provides some configs to make these feature easy to
use.

6.7.2 Auxiliary SQL Functions for Spark SQL

Kyuubi provides several auxiliary SQL functions as supplement to Spark’s Built-in Functions

6.7. SQL References 107

https://search.maven.org/search?q=kyuubi-extension-spark
https://spark.apache.org/docs/latest/api/sql/index.html#built-in-functions

Kyuubi, Release 1.3.0

6.7.3 Z-order Benchmark

Z-order is a technique that allows you to map multidimensional data to a single dimension. We did a performance test.

For this test ,we used aliyun Databricks Delta test case https://help.aliyun.com/document_detail/168137.html?spm=a2c4g.11186623.6.563.10d758ccclYtVb.

Prepare data for the three scenarios:

1. 10 billion data and 2 hundred files (parquet files): for big file(1G)

2. 10 billion data and 1 thousand files (parquet files): for medium file(200m)

3. 1 billion data and 10 thousand files (parquet files): for smaller file(200k)

Test env: spark-3.1.2 hadoop-2.7.2 kyuubi-1.4.0

Test step:

Step1: create hive tables.

spark.sql(s"drop database if exists $dbName cascade")
spark.sql(s"create database if not exists $dbName")
spark.sql(s"use $dbName")
spark.sql(s"create table $connRandomParquet (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connOrderbyOnlyIp (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connOrderby (src_ip string, src_port int, dst_ip string,
→˓dst_port int) stored as parquet")
spark.sql(s"create table $connZorderOnlyIp (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connZorder (src_ip string, src_port int, dst_ip string, dst_
→˓port int) stored as parquet")
spark.sql(s"show tables").show(false)

Step2: prepare data for parquet table with three scenarios, we use the following code.

def randomIPv4(r: Random) = Seq.fill(4)(r.nextInt(256)).mkString(".")
def randomPort(r: Random) = r.nextInt(65536)

def randomConnRecord(r: Random) = ConnRecord(
src_ip = randomIPv4(r), src_port = randomPort(r),
dst_ip = randomIPv4(r), dst_port = randomPort(r))

Step3: do optimize with z-order only ip and do optimize with order by only ip, sort column: src_ip, dst_ip and shuffle
partition just as file numbers.

INSERT overwrite table conn_order_only_ip select src_ip, src_port, dst_ip, dst_port
→˓from conn_random_parquet order by src_ip, dst_ip;
OPTIMIZE conn_zorder_only_ip ZORDER BY src_ip, dst_ip;

Step4: do optimize with z-order and do optimize with order by, sort column: src_ip, src_port, dst_ip, dst_port and
shuffle partition just as file numbers.

INSERT overwrite table conn_order select src_ip, src_port, dst_ip, dst_port from conn_
→˓random_parquet order by src_ip, src_port, dst_ip, dst_port;
OPTIMIZE conn_zorder ZORDER BY src_ip, src_port, dst_ip, dst_port;

The complete code is as follows:

108 Chapter 6. High Availability

Kyuubi, Release 1.3.0

./spark-shell
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

case class ConnRecord(src_ip: String, src_port: Int, dst_ip: String, dst_port: Int)

val conf = new SparkConf().setAppName("zorder_test")
val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
import spark.implicits._

val sc = spark.sparkContext
sc.setLogLevel("WARN")
//ten billion rows and two hundred files
val numRecords = 10*1000*1000*1000L
val numFiles = 200

val dbName = s"zorder_test_$numFiles"
val baseLocation = s"hdfs://localhost:9000/zorder_test/$dbName/"
val connRandomParquet = "conn_random_parquet"
val connZorderOnlyIp = "conn_zorder_only_ip"
val connZorder = "conn_zorder"
spark.conf.set("spark.sql.shuffle.partitions", numFiles)
spark.conf.get("spark.sql.shuffle.partitions")
spark.conf.set("spark.sql.hive.convertMetastoreParquet",false)
spark.sql(s"drop database if exists $dbName cascade")
spark.sql(s"create database if not exists $dbName")
spark.sql(s"use $dbName")
spark.sql(s"create table $connRandomParquet (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connOrderbyOnlyIp (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connOrderby (src_ip string, src_port int, dst_ip string,
→˓dst_port int) stored as parquet")
spark.sql(s"create table $connZorderOnlyIp (src_ip string, src_port int, dst_ip
→˓string, dst_port int) stored as parquet")
spark.sql(s"create table $connZorder (src_ip string, src_port int, dst_ip string, dst_
→˓port int) stored as parquet")
spark.sql(s"show tables").show(false)

import scala.util.Random
// Function for preparing Zorder_Test data
def randomIPv4(r: Random) = Seq.fill(4)(r.nextInt(256)).mkString(".")
def randomPort(r: Random) = r.nextInt(65536)

def randomConnRecord(r: Random) = ConnRecord(
src_ip = randomIPv4(r), src_port = randomPort(r),
dst_ip = randomIPv4(r), dst_port = randomPort(r))

val df = spark.range(0, numFiles, 1, numFiles).mapPartitions { it =>
val partitionID = it.toStream.head
val r = new Random(seed = partitionID)
Iterator.fill((numRecords / numFiles).toInt)(randomConnRecord(r))
}

df.write
.mode("overwrite")
.format("parquet")

(continues on next page)

6.7. SQL References 109

Kyuubi, Release 1.3.0

(continued from previous page)

.insertInto(connRandomParquet)

spark.read.table(connRandomParquet)
.write
.mode("overwrite")
.format("parquet")
.insertInto(connZorderOnlyIp)

spark.read.table(connRandomParquet)
.write
.mode("overwrite")
.format("parquet")
.insertInto(connZorder)
spark.stop()

Z-order Optimize statement:

set spark.sql.hive.convertMetastoreParquet=false;

OPTIMIZE conn_zorder_only_ip ZORDER BY src_ip, dst_ip;

OPTIMIZE zorder_test.conn_zorder ZORDER BY src_ip, src_port, dst_ip, dst_port;

ORDER BY statement:

INSERT overwrite table conn_order_only_ip select src_ip, src_port, dst_ip, dst_port
→˓from conn_random_parquet order by src_ip, dst_ip;

INSERT overwrite table conn_order select src_ip, src_port, dst_ip, dst_port from conn_
→˓random_parquet order by src_ip, src_port, dst_ip, dst_port;

Query statement:

set spark.sql.hive.convertMetastoreParquet=true;

select count(*) from conn_random_parquet where src_ip like '157%' and dst_ip like
→˓'216.%';

select count(*) from conn_zorder_only_ip where src_ip like '157%' and dst_ip like
→˓'216.%';

select count(*) from conn_zorder where src_ip like '157%' and dst_ip like '216.%';

110 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Benchmark result

We have done two performance tests: one is to compare the efficiency of Z-order Optimize and Order by Sort, and the
other is to query based on the optimized Z-order by data and Random data.

Efficiency of Z-order Optimize and Order-by Sort

10 billion data and 1000 files and Query resource: 200 core 600G memory

Z-order by or order by only ip:

Z-order by or order by all columns:

Z-order by benchmark result

By querying the tables before and after optimization, we find that:

10 billion data and 200 files and Query resource: 200 core 600G memory

10 billion data and 1000 files and Query resource: 200 core 600G memory

1 billion data and 10000 files and Query resource: 10 core 40G memory

6.8 Tools

6.8. Tools 111

Kyuubi, Release 1.3.0

6.8.1 Kubernetes Tools Spark Block Cleaner

Requirements

You’d better have cognition upon the following things when you want to use spark-block-cleaner.

• Read this article

• An active Kubernetes cluster

• Kubectl

• Docker

Scenes

When you’re using Spark On Kubernetes with Client mode and don’t use emptyDir for Spark local-dir type,
you may face the same scenario that executor pods deleted without clean all the Block files. It may cause disk overflow.

Therefore, we chose to use Spark Block Cleaner to clear the block files accumulated by Spark.

Principle

When deploying Spark Block Cleaner, we will configure volumes for the destination folder. Spark Block Cleaner will
perceive the folder by the parameter CACHE_DIRS.

Spark Block Cleaner will clear the perceived folder in a fixed loop(which can be configured by
SCHEDULE_INTERVAL). And Spark Block Cleaner will select folder start with blockmgr and spark for deletion
using the logic Spark uses to create those folders.

Before deleting those files, Spark Block Cleaner will determine whether it is a recently modified file(depending on
whether the file has not been acted on within the specified time which configured by FILE_EXPIRED_TIME). Only
delete files those beyond that time interval.

And Spark Block Cleaner will check the disk utilization after clean, if the remaining space is less than the spec-
ified value(control by FREE_SPACE_THRESHOLD), will trigger deep clean(which file expired time control by
DEEP_CLEAN_FILE_EXPIRED_TIME).

Usage

Before you start using Spark Block Cleaner, you should build its docker images.

Build Block Cleaner Docker Image

In the KYUUBI_HOME directory, you can use the following cmd to build docker image.

docker build ./tools/spark-block-cleaner/kubernetes/docker

112 Chapter 6. High Availability

https://kubernetes.io/docs/reference/kubectl/overview/
https://www.docker.com/

Kyuubi, Release 1.3.0

Modify spark-block-cleaner.yml

You need to modify the ${KYUUBI_HOME}/tools/spark-block-cleaner/kubernetes/
spark-block-cleaner.yml to fit your current environment.

In Kyuubi tools, we recommend using DaemonSet to start, and we offer default yaml file in daemonSet way.

Base file structure:

apiVersion
kind
metadata

name
namespace

spec
select
template
metadata
spce

containers
- image
- volumeMounts
- env

volumes

You can use affect the performance of Spark Block Cleaner through configure parameters in containers env part of
spark-block-cleaner.yml.

env:
- name: CACHE_DIRS
value: /data/data1,/data/data2

- name: FILE_EXPIRED_TIME
value: 604800

- name: DEEP_CLEAN_FILE_EXPIRED_TIME
value: 432000

- name: FREE_SPACE_THRESHOLD
value: 60

- name: SCHEDULE_INTERVAL
value: 3600

The most important thing, configure volumeMounts and volumes corresponding to Spark local-dirs.

For example, Spark use /spark/shuffle1 as local-dir, you can configure like:

volumes:
- name: block-files-dir-1
hostPath:

path: /spark/shuffle1

volumeMounts:
- name: block-files-dir-1
mountPath: /data/data1

env:
- name: CACHE_DIRS
value: /data/data1

6.8. Tools 113

Kyuubi, Release 1.3.0

Start daemonSet

After you finishing modifying the above, you can use the following command kubectl apply -f
${KYUUBI_HOME}/tools/spark-block-cleaner/kubernetes/spark-block-cleaner.yml
to start daemonSet.

Related parameters

6.9 Overview

114 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.9.1 Kyuubi Architecture

Introduction

Kyuubi is a high-performance universal JDBC and SQL execution engine. The goal of Kyuubi is to facilitate users to
handle big data like ordinary data.

It provides a standardized JDBC interface with easy-to-use data access in big data scenarios. End-users can focus
on developing their business systems and mining data value without being aware of the underlying big data platform
(compute engines, storage services, metadata management, etc.).

Kyuubi relies on Apache Spark to provide high-performance data query capabilities, and every improvement in the
engine’s capabilities can help Kyuubi’s performance make a qualitative leap. Besides, Kyuubi improves ad-hoc respon-
siveness through the way of engine caching, and enhances concurrency through horizontal scaling and load balancing.

It provides complete authentication and authentication services to ensure data and metadata security.

It provides robust high availability and load-balancing to help you guarantee the SLA commitment.

It provides a two-level elastic resource management architecture to effectively improve resource utilization while
covering the performance and response requirements of all scenarios, including interactive, or batch processing and
point queries or full table scans.

It embraces Spark and builds an ecosystem on top of it, which allows Kyuubi to expand its existing ecosystem and
introduce new features quickly, such as cloud-native support and Data Lake/Lake House support.

Kyuubi’s vision is to build on top of Apache Spark and Data Lake technologies to unify the portal and become an ideal
data lake management platform. It can support data processing e.g. ETL, and analytics e.g. BI, in a pure SQL way.
All workloads can be done on one platform, using one copy of data, with one SQL interface.

Architecture Overview

The fundamental technical architecture of the Kyuubi system is shown in the following diagram.

6.9. Overview 115

Kyuubi, Release 1.3.0

The middle part of the diagram shows the Kyuubi server’s main component, which handles the clients’ connection
and execution requests shown in the left part of the image. Within Kyuubi, these connection requests are maintained
as the Kyuubi session’s, and execution requests are supported as the Kyuubi Operation’s which are bound to the
corresponding sessions.

The creation of a Kyuubi Session can be divided into two cases: lightweight and heavyweight. Most session cre-
ations are lightweight and user-unaware. The only heavyweight case is when there is no SparkContext instantiated
or cached in the user’s shared domain, which usually happens when the user is connecting for the first time or has not
connected for a long time. This one-time cost session maintenance model can meet most of the ad-hoc fast response
requirements.

Kyuubi maintains connections to SparkConext in a loosely coupled fashion. These SparkContexts can be
Spark programs created locally in client deploy mode by this service instance, or in Yarn or Kubernetes clusters in
cluster deploy mode. In highly available mode, these SparkConexts can also be created by other Kyuubi instances
on different machines and shared by this instance.

These SparkConexts instances are essentially remote query execution engine programs hosted by Kyuubi services.
These programs are implemented on Spark SQL and compile, optimize, and execute SQL statements end-to-end and
the necessary interaction with the metadata (e.g. Hive Metastore) and storage (e.g. HDFS) services, maximizing the
power of Spark SQL. They can manage their lifecycle, cache and recycle themselves, and are not affected by failover
on the Kyuubi server.

Next, let us share some of the key design concepts of Kyuubi.

Unified Interface

Kyuubi implements the Hive Service RPC module, which provides the same way of accessing data as HiveServer2
and Spark Thrift Server. On the client side, you can build fantastic business reports, BI applications, or even ETL jobs
only via the Hive JDBC module.

You only need to be familiar with Structured Query Language (SQL) and Java Database Connectivity (JDBC) to
handle massive data. It helps you focus on the design and implementation of your business system.

• SQL is the standard language for accessing relational databases and very popular in big data eco too. It turns
out that everybody knows SQL.

• JDBC provides a standard API for tool/database developers and makes it possible to write database applications
using a pure Java API.

• There are plenty of free or commercial JDBC tools out there.

Runtime Resource Resiliency

The most significant difference between Kyuubi and Spark Thrift Server(STS) is that STS is a single Spark application.
For example, if it runs on an Apache Hadoop Yarn cluster, this application is also a single Yarn application that can
only exist in a specific fixed queue of the Yarn cluster after it is created. Kyuubi supports the submission of multiple
Spark applications.

Yarn loses its role as a resource manager for resource management and does not play the corresponding role of resource
isolation and sharing. When users from the client have different resource queue permissions, STS will not be able to
handle it in this case.

For data access, a single Spark application has only one user globally, a.k.a. sparkUser, and we have to grant it
a superuser-like role to allow it to perform data access to different client users, which is a too insecure practice in
production environments.

Kyuubi creates different Spark applications based on the connection requests from the client, and these applications
can be placed in different shared domains for other connection requests to share.

116 Chapter 6. High Availability

https://mvnrepository.com/artifact/org.apache.hive/hive-service-rpc/2.3.9
https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc/2.3.9

Kyuubi, Release 1.3.0

Kyuubi does not occupy any resources from the Cluster Manager(e.g. Yarn) during startup and will give all resources
back if there is not any active session interacting with a SparkContext.

Spark also provides Dynamic Resource Allocation to dynamically adjust the resources your application occupies based
on the workload. It means that your application may give resources back to the cluster if they are no longer used and
request them again later when there is demand. This feature is handy if multiple applications share resources in your
Spark cluster.

With these features, Kyuubi provides a two-level elastic resource management architecture to improve resource uti-
lization effectively.

For example,

./beeline -u "jdbc:hive2://kyuubi.org:10009/;\
hive.server2.proxy.user=tom#\
spark.yarn.queue=thequeue;\
spark.dynamicAllocation.enabled=true;\
spark.dynamicAllocation.maxExecutors=500;\
spark.shuffle.service.enabled=true;\
spark.executor.cores=3;\
spark.executor.memory=10g"

If the user named tom opens a connection like above, Kyuubi will try to create a Spark SQL engine application with
[3, 500] executors (3 cores, 10g mem each) in the queue named thequeue in the Yarn cluster.

On the one hand, because tom enables Spark’s dynamic resource request feature, Spark will efficiently request and
recycle executors within the program based on the SQL operations scale and the available resources in the queue. On
the other hand, when Kyuubi finds that the application has been idle for too long, it will also recycle its application.

High Availability & Load Balance

For an enterprise service, the Service Level Agreement(SLA) commitment must be very high. And the concurrency
needs to be sufficiently robust to support the entire enterprise’s requests. As a single Spark application and without
high availability, Spark Thrift Server can hardly meet the SLA and concurrency requirement. When there are large
query requests, there are potential bottlenecks in metadata service access, scheduling and memory pressure of Spark
Driver, or the application’s overall computational resource constraints.

Kyuubi provides high availability and load balancing solutions based on Zookeeper, as shown in the following diagram.

6.9. Overview 117

http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation

Kyuubi, Release 1.3.0

Let us try to break it down from top to bottom based on the above diagram.

1. At the top of the diagram is the client layer. A client can find multiple registered instances of Kyuubi instance
(k.i.) from the namespace in the service discovery layer and then choose to connect. Kyuubi instances registered
to the same namespace provide the ability to load balance each other.

2. The selected Kyuubi instance will pick an available engine instance (e.i.) from the engine-namespace in the
service discovery layer to establish a connection. If no available instance is found, it will create a new one, wait
for the engine to finish registering, and then proceed to connect.

3. If the same person requests a new connection, the connection will be set up to the same or another Kyuubi
instance, but the engine instance will be reused.

4. For connections from different users, the step 2 and 3 will be repeated. This is because in the service discovery
layer, the namespaces used to store the address of the engine instances are isolated based on the user(by default),
and different users cannot access other’s instances across the namespace.

118 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Authentication & Authorization

In a secure cluster, services should be able to identify and authenticate callers. As the fact that the user claims does
not necessarily mean this is true. The authentication process of Kyuubi is used to verify the user identity that a client
used to talk to the Kyuubi server. Once done, a trusted connection will be set up between the client and server if they
are successful; otherwise, they will be rejected.

The authenticated client user will also be the user that creates the associate engine instance, then authorizations for
database objects or storage could be applied. We also create a Submarine: Spark Security external plugin to achieve
fined-grained SQL standard-based authorization.

Conclusions

Kyuubi is a unified multi-tenant JDBC interface for large-scale data processing and analytics, built on top of Apache
Spark™. It extends the Spark Thrift Server’s scenarios in enterprise applications, the most important of which is
multi-tenancy support.

6.9.2 Kyuubi v.s. HiveServer2

Introduction

HiveServer2 is a service that enables clients to execute Hive QL queries on Hive supporting multi-client concurrency
and authentication. Kyuubi enables clients to execute Spark SQL queries directly on Spark supporting multi-client
concurrency and authentication too.

They are both designed to provide better support for open API clients like JDBC and ODBC to manage and analyze
BigData.

Hive on Spark

The purpose of Hive on Spark is to add Spark as a third execution backend, parallel to MR and Tez. Comparing to
Hive on MR, it’s use the Spark DAG will help improve the performance of Hive queries, especially those have multiple
reducer stages.

Differences Between Kyuubi and HiveServer2

Performance

References

1. HiveServer2 Overview

6.9. Overview 119

https://mvnrepository.com/artifact/org.apache.submarine/submarine-spark-security
http://spark.apache.org/
http://spark.apache.org/
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview

Kyuubi, Release 1.3.0

6.9.3 Kyuubi v.s. Spark Thrift JDBC/ODBC Server (STS)

Introductions

The Apache Spark Thrift JDBC/ODBC Server is a Thrift service implemented by the Apache Spark community based
on HiveServer2. Designed to be seamlessly compatible with HiveServer2, it provides Spark SQL capabilities to end-
users in a pure SQL way through a JDBC interface. This “out-of-the-box” model minimizes the barriers and costs for
users to use Spark.

Kyuubi and Spark are aligned in this goal. On top of that, Kyuubi has made enhancements in multi-tenant support,
service availability, service concurrency capability, data security, and other aspects.

Barriers to common Spark job usage

In this part, the most fundamental one is how we define a Spark User. Generally speaking, a Spark user is a guy
that calls Spark APIs directly, but from Kyuubi and Spark ThriftServer’s perspective, the direct API calls occur on the
server-side, then a Spark user indirectly interacts with Spark’s backend through the more common JDBC specification
and protocols. With JDBC and SQL, Kyuubi and Spark ThriftServer make users experience the same way that interacts
with most of the world’s popular modern DBMSes.

Using Spark APIs directly is flexible for programmers with a bigdata background but may not be friendly for everyone.

High Barrier

Users need a certain programming framework to use Spark through the Scala/Java/Python interfaces provided by
Spark. Also, users need to have a good background in big data. For example, users need to know which platform
their application will be submitted to, YARN, Kubernetes, or others. They also need to be aware of the resource
consumption of their jobs, for example, executor numbers, memory for each executor. If they use too many resources,
will it affect other critical tasks? Otherwise, will the cluster’s resources be idle and wasted? It is also hard for users to
set up thousands of Spark configurations properly. Key features like Dynamic Resource Allocation, Speculation might
be hard to benefit all with a one-time setup. And new features like Adaptive Query Execution could come a long way
from the first release involved of Spark to finally get applied to end-users.

Insecurity

Users can access metadata and data by means of code, and data security cannot be guaranteed. All client configurations
need to be handed over to the user directly or indirectly. These configurations may contain sensitive information and
let all the backend services be completely exposed to the users. For example, in terms of data security, the Submarine
Spark Security Plugin provides SQL Standard ACL Management for Apache Spark SQL with Apache Ranger. But
in the end, this kind of security feature is at most a “gentleman’s agreement” in front of programmers who can write
code to submit jobs via Spark code.

120 Chapter 6. High Availability

http://spark.apache.org/docs/latest/sql-distributed-sql-engine.html
https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README
https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README

Kyuubi, Release 1.3.0

Compatibility

Client-side compatibility is difficult to guarantee. When a user’s Spark job is finally scheduled to run on a cluster, it
faces problems such as inconsistencies between the client environment and the cluster environment, conflicts between
user job dependencies, Spark dependencies, and Hadoop cluster dependencies. When we upgrade the server-side
staffs, such as Spark, Hive, and YARN, etc., it is also necessary to upgrade all of the user clients with transitive
dependencies as much as possible, which may introduce a lot of unnecessary compatibility testing work, and it is hard
to have complete test coverage.

Bootstrap latency

For long-running Spark applications, the bootstrap time is negligible compared to the total lifecycle, such as Spark
Structured Streaming. In this case, the task scheduling and computing are fully thread-level with low latency and fast
response. For short-term ones, the bootstrap time counts, such as the SparkPi. Relatively speaking, this process is
very time-consuming, especially for some second-and minute-level computation tasks.

Spark ThriftServer is essentially a Spark application in a multi-threaded scenario. It pre-starts a distributed SQL engine
consisting of a driver and multiple executors at runtime. At the SQL parsing layer, the service takes full advantage
of the Spark SQL optimizer, and at the computation execution layer, since Spark ThriftServer is resident, there is no
bootstrap overhead, and when DRA is not enabled, the entire SQL computation process is in pure threaded scheduling
model with excellent performance.

6.9. Overview 121

Kyuubi, Release 1.3.0

The JDBC connections and operations are handled by the frontend thread pool as various requests. And the cor-
responding methods of the backend are called to bind to the SparkSession related interface. For example, the
DriverManager.getConnection at the client-side will invoke SparkSession.newSession() at the
server-side, and all queries from the client-side will be submitted to the backend thread pool asynchronously and
executed by SparkSession.sql(...).

First, in this mode, users can interact with Spark ThriftServer through simple SQL language and JDBC interface to
implement their own business logic. The basic capacity planning of Spark ThriftServer, the consolidation of underlying
services, and all the optimizations can all be made on the server-side. Some people may think that only using SQL
does not meet all the business, that’s true, but the service itself is targeting users that migrating from HiveServer2 for
the reason of query speed. With UDF/UDAF support, Some complex logic can still be fulfilled, so basically, Spark
ThriftServer is able to deal with most of the big data processing workloads.

Secondly, all the setups for backend services, such as YARN, HDFS, and Hive Metastore Server(HMS), are completed
in Spark ThriftServer, so there is no need to hand over the configuration of the backend services to the end-users.
This ensures data security to a certain extent. On top of that, the server generally has the ability to do authentica-
tion/authorization and other assurance to protect data security.

122 Chapter 6. High Availability

Kyuubi, Release 1.3.0

Finally, the JDBC interface protocol and C/S architecture under the server-side backward compatibility constraints
basically ensure that there will be no client-side compatibility obstacles. Users only need to choose the appropriate
version of the JDBC driver. The server-side upgrade will not cause interface incompatibility. As for the potential
SQL compatibility problem in Spark version upgrade, it also exists when not using Spark ThriftServer, and is more
challenging to solve. Moreover, in Spark ThriftServer mode, the server-side can do the full amount of SQL collection
in advance, and the verification can be done before the upgrade.

Limitations of Spark ThriftServer

As we can see from the basic architecture of Spark ThriftServer above, it is essentially a single Spark application, and
there are generally significant limitations to responding to thousands of client requests.

Driver Bottleneck

The Spark Driver has to both play the role of the scheduler of a Spark application and also the handler of thousands of
connections and operations from the client-side. In this case, it is very likely to hit its bottleneck. The Hive metastore
client on which the Spark analyzer depends for resolving all queries is one and only, so there will be more obvious
concurrency issues when accessing the HMS.

Resource isolation issues

Over-sized Spark jobs encroach on too many of Spark ThriftServer resources, causing other jobs to delay or get stuck.

With Fair Scheduler Pools, Spark ThriftServer has the ability of resource isolation and sharing to a certain extent. It
will send queries to a high-weight pool to get more executors for execution. In essence, resource isolation such as
CPU/memory/IO should be something that resource managers like YARN and Kubernetes should do. Doing logical
isolation at the computing layer is unlikely to work well, and this problem exists in the Apache Impala project as well,
for example. And it is difficult to avoid the problem of HMS, HDFS single point access, especially in the scenario of
reading and writing dynamic partition tables or handling queries with numerous Unions.

Multi-tenancy limitations

Spark ThriftServer itself should be a multi-tenant-enabled system, i.e., it can accept requests from different clients
and users. However, from Spark’s design point of view, Spark ThriftServer implemented in a single Spark application
cannot fully support multi-tenancy because the entire application has only a globally unique username, including both
the driver side, and the executor side. So, it has to access all users’ data with a single tenant.

Spark ThriftServer occupies a single resource queue (YARN Queue / Kubernetes Namespace), making it difficult to
control the resource pool’s size available to each tenant in a fine-grained or elastic way from the perspective of resource
isolation and sharing. No one would like to restart the server and stop it from serving to adjust some pool’s weight or
increase the total computing resources.

6.9. Overview 123

Kyuubi, Release 1.3.0

High Availability Limitations

The community edition of Spark ThriftServer does not support High Availability (HA). It is hard to imagine whether
a server-side application without high availability can support the SLA commitment. It’s not that difficult to apply
an HA implementation to Spark ThriftServer, but tricky. For example, there is already a JIRA ticket: SPARK-11100
with a pull request attached, see [SPARK-11100]. There are generally two ways for the HA implementation of Spark
ThriftServer, namely Active/Standby and LoadBalancing.

The Active/Standby mode consists of active Spark ThriftServer and several standby servers. When the active crashes
or hangs, the standby nodes trigger the leader selection to become the new active one to take over. The problems
here are undeniable: There is only one active node runtime, so the concurrency capability is limited. When a failover
occurs due to hardware and software failure, all current connections and running jobs will fail. This kind of failover
is expensive for client-side users. The clients will retry simultaneously, so it’s hard for the new elected active server
to handle the coming flood of client retries. It’s very likely to crash again. The Standby node causes serious waste
of cluster resources, whether Spark dynamic resource allocation is enabled or not. A more appropriate approach to
solve the server-side single-point problem is to add LoadBalancing support of your own. So that when client requests
increase, we can expand Spark ThriftServer horizontally. However, this model also has some limitations. Each Spark
ThriftServer is stateful with transient data or functionalities, such as some global temporary views, UDFs, etc., which
cannot be shared between two servers. And it’s expensive to expand with computing resources together.

UDF Issues

For operations like ADD JAR ... or CREATE TEMPORARY FUNCTION ... USING..., classes or jars might
conflict in the Spark ThriftServer. And there is no such way for deleting when conflicts. Besides, since UDFs are
loaded directly into the Spark ThriftServer, if they contain some unintentional or malicious logic, such as calling
System.exit(-1), which may kill the service directly, or some operations that affect the server behavior globally
like Kerberos authentication.

Kyuubi VS Spark Thrift Server

The HiveServer2 is also introduced here for a more comprehensive comparison.

Consistent Interfaces

Kyuubi, Spark Thrift Server, and HiveServer2 are identical in terms of interfaces and protocols. Therefore, from the
user’s point of view, the way of use is unchanged. Compared with HiveServer2, the most significant advantage of the
first two should be the performance improvement.

From the perspective of SQL syntax compatibility, Kyuubi and Spark Thrift Server are fully compatible with Spark
SQL as they are completely delegated to the Spark SQL Catalyst layer. Spark SQL also fully supports Hive QL
collections, with only a few enumerable SQL behaviors and syntax differences.

124 Chapter 6. High Availability

https://issues.apache.org/jira/browse/SPARK-11100

Kyuubi, Release 1.3.0

Multi-tenant Architecture

From wikipedia: The term “software multitenancy” refers to a software architecture in which a single instance of
the software runs on a server and serves multiple tenants. Systems designed in such a manner are often called shared
(in contrast to dedicated or isolated).

Kyuubi, Spark ThriftServer, and HiveServer2 have been designed for a typical multi-tenant architecture scenario.

Firstly, we need to consider how to 1) make safer and more efficient use of these compute resources based on resource
isolation and 2) how to give users enough control over their own resources.

HiveServer2 is supposed to be the most flexible one. Each SQL is programmed into several Spark applications for
execution, and the resource queue, memory, and others can be set before execution. But this approach leads to
extremely high Spark bootstrap latency and can not efficiently utilize resources.

Spark ThriftServer goes in the opposite direction because there is only one Spark application. It is impossible to adjust
the queue, memory, and other resource-related configs from the user side interface as it is already pre-started. Queries
can be sent to pre-set Fair Scheduler Pools for running in isolation. The Fair Scheduler Pools can
only provide low isolation within a Spark application and be configured before Spark ThriftServer starts.

Kyuubi has neutralized these aspects with two other system implementations. Kyuubi applies the multi-tenant feature
based on the concept of Kyuubi Engines, where an Engine is a Spark application.

In Kyuubi’s system, the Engines are isolated according to tenants. The tenant, a.k.a. user, is unified and end-to-end
unique through a JDBC connection. Kyuubi server will identify and authenticate the user and then retrieve or create an
Engine belonging to this particular user. This user will be used as the submitter for Engine, and it must have authority
to use the resources from YARN, Kubernetes, or just Local machine, e.t.c. Inside an Engine, the Engine’s user, a.k.a.
Spark User, will also be the same. When an Engine runs queries received from the JDBC connection, the Engine’s
user must also have rights to access the data. Besides, if it needs access to metadata during this process, then we can
also add a fine-grained SQL standard ACL management on the metadata layer now with Submarine Spark Security
Plugin.

The Engines have their lifecycle, which is related to the kyuubi.engine.share.level specified via client
configurations. For example, if set to CONNECTION, then the corresponding Engine will be created for each JDBC
connection and terminates itself when we close the connection. For another example, if set to USER, the corresponding
Engine is cached and shared with all JDBC connections from the same user, even through different Kyuubi servers in
HA mode. The Engine will eventually timeout after all the sessions are closed.

As we need to create Engines, on the one hand, we can configure all the Spark configurations during startup. On
the other hand, it does bring the Spark application bootstraps overhead here, but overall, it is just a one-time cost.
All queries or connections of the Engine’s user will share this application. The more queries it runs, the lower the
bootstraps overhead is.

High Availability Capabilities

The HA issues in Spark ThriftServer have already been covered in the previous section so that we won’t go over them
here again. In Kyuubi, we provide HA in the way of LoadBlancing. Kyuubi is lightweight, as it does not create
any Engine when it starts. It’s cheap to add Kyuubi HA nodes, so horizontal scaling is not overly burdensome.

6.9. Overview 125

https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README
https://submarine.apache.org/docs/userDocs/submarine-security/spark-security/README

Kyuubi, Release 1.3.0

Client Concurrency

The compilation and optimization for queries in both HiveServer2 and Spark ThriftServer are done on the server-
side. In contrast, Kyuubi will do these at the Engine-side. It is instrumental in reducing the workload of the server
and improving client concurrency. For task scheduling that belongs to the compute phase also happens at Kyuubi’s
Engine side. It is not as heavy as the Spark ThriftServer, where there is an intense competition between the client
concurrency and the task scheduling. In principle, the more executors there are, or the more significant the amount of
data processed, the more pressure on the server-side.

Service Stability

The intense competition between the client concurrency and the task scheduling increases GC issues and OOM risks
of Spark ThriftServer. Kyuubi has no problem in this area due to the separation of the server and engines. The UDF
risks cannot harm the stability of the service either. As if a user loads and calls an invalid UDF, which only damages
its own Engine and will not affect other users or the Kyuubi server.

Summary

Kyuubi extends the use of Spark ThriftServer in a multi-tenant model based on a unified interface and relies on the
concept of multi-tenancy to interact with cluster managers to finally gain the ability of resources sharing/isolation and
data security. The loosely coupled architecture of Kyuubi Server and Engine greatly improves the concurrency and
service stability of the service itself.

6.10 Develop Tools

126 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.10.1 Building Kyuubi

Building Kyuubi with Apache Maven

Kyuubi is built based on Apache Maven,

./build/mvn clean package -DskipTests

This results in the creation of all sub-modules of Kyuubi project without running any unit test.

If you want to test it manually, you can start Kyuubi directly from the Kyuubi project root by running

bin/kyuubi start

Building a Submodule Individually

For instance, you can build the Kyuubi Common module using:

build/mvn clean package -pl kyuubi-common -DskipTests

Building Submodules Individually

For instance, you can build the Kyuubi Common module using:

build/mvn clean package -pl kyuubi-common,kyuubi-ha -DskipTests

Skipping Some modules

For instance, you can build the Kyuubi modules without Kyuubi Codecov and Assembly modules using:

mvn clean install -pl '!dev/kyuubi-codecov,!kyuubi-assembly' -DskipTests

Building Kyuubi against Different Apache Spark versions

Since v1.1.0, Kyuubi support building with different Spark profiles,

Defining the Apache Mirror for Spark or Flink

By default, we use https://archive.apache.org/dist/spark/ to download the built-in Spark or use
https://archive.apache.org/dist/flink/ to download the built-in Flink release package, but if you
find it hard to reach, or the downloading speed is too slow, you can define the spark.archive.mirror or
flink.archive.mirror property to a suitable Apache mirror site. For instance,

build/mvn clean package -Dspark.archive.mirror=https://mirrors.bfsu.edu.cn/apache/
→˓spark/spark-3.0.1

Visit Apache Mirrors and choose a mirror based on your region.

Specifically for developers in China mainland, you can use the pre-defined profile named mirror-cn which use
mirrors.bfsu.edu.cn to speed up Spark Binary downloading. For instance,

6.10. Develop Tools 127

http://maven.apache.org
http://www.apache.org/mirrors/

Kyuubi, Release 1.3.0

build/mvn clean package -Pmirror-cn

6.10.2 Building a Runnable Distribution

To create a Kyuubi distribution like those distributed by Kyuubi Release Page, and that is laid out to be runnable, use
./build/dist in the project root directory.

For more information on usage, run ./build/dist --help

./build/dist - Tool for making binary distributions of Kyuubi Server

Usage:
+---
→˓-+
| ./build/dist [--name <custom_name>] [--tgz] [--spark-provided] <maven build options>
→˓ |
+---
→˓-+
name: - custom binary name, using project version if undefined
tgz: - whether to make a whole bundled package
spark-provided: - whether to make a package without Spark binary

For instance,

./build/dist --name custom-name --tgz

This results in a Kyuubi distribution named kyuubi-{version}-bin-custom-name.tgz for you.

If you are planing to deploy Kyuubi where spark is provided, in other word, it’s not required to bundle spark binary,
use

./build/dist --tgz --spark-provided

Then you will get a Kyuubi distribution without spark binary named kyuubi-{version}-bin.tgz.

128 Chapter 6. High Availability

https://github.com/apache/incubator-kyuubi/releases

Kyuubi, Release 1.3.0

6.10.3 Building Kyuubi Documentation

Follow the steps below and learn how to build the Kyuubi documentation as the one you are watching now.

Install & Activate virtualenv

Firstly, install virtualenv, this is optional but recommended as it is useful to create an independent environment
to resolve dependency issues for building the documentation.

pip install virtualenv

Switch to the docs root directory.

cd $KTUUBI_HOME/docs

Create a virtual environment named ‘kyuubi’ or anything you like using virtualenv if it’s not existing.

virtualenv kyuubi

Activate it,

source ./kyuubi/bin/activate

Install all dependencies

Install all dependencies enumerated in the requirements.txt.

pip install -r requirements.txt

Create Documentation

make html

If the build process succeed, the HTML pages are in _build/html.

View Locally

Open the _build/html/index.html file in your favorite web browser.

6.10. Develop Tools 129

Kyuubi, Release 1.3.0

6.10.4 Running Tests

Kyuubi can be tested based on Apache Maven and the ScalaTest Maven Plugin, please refer to the ScalaTest docu-
mentation,

Running Tests Fully

The following is an example of a command to run all the tests:

./build/mvn clean test

Running Tests for a Module

./build/mvn clean test -pl :kyuubi-common

Running Tests for a Single Test

When developing locally, it’s convenient to run one single test, or a couple of tests, rather than all.

With Maven, you can use the -DwildcardSuites flag to run individual Scala tests:

./build/mvn test -Dtest=none -DwildcardSuites=org.apache.kyuubi.service.
→˓FrontendServiceSuite

If you want to make a single test that need to integrate with kyuubi-spark-sql-engine module, please build the package
for kyuubi-spark-sql-engine module at first.

You can leverage the ready-made tool for creating a binary distribution.

./build/dist

6.10.5 Debugging Kyuubi

You can use the Java Debug Wire Protocol to debug Kyuubi with your favorite IDE tool, e.g. IntelliJ IDEA.

130 Chapter 6. High Availability

http://maven.apache.org
http://www.scalatest.org/user_guide/using_the_scalatest_maven_plugin
http://www.scalatest.org/user_guide/using_the_scalatest_maven_plugin
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/conninv.html#Plugin

Kyuubi, Release 1.3.0

Debugging Server

We can configure the JDWP agent in KYUUBI_JAVA_OPTS for debugging.

For example,

KYUUBI_JAVA_OPTS=-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 \
bin/kyuubi start

In the IDE, you set the corresponding parameters(host&port) in debug configurations, for example,

Debugging Apps

• Spark Driver

spark.driver.extraJavaOptions -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,
→˓address=5005

• Spark Executor

spark.executor.extraJavaOptions -agentlib:jdwp=transport=dt_socket,server=y,
→˓suspend=y,address=5005

6.10. Develop Tools 131

Kyuubi, Release 1.3.0

6.10.6 Developer Tools

Update Project Version

build/mvn versions:set -DgenerateBackupPoms=false

Update Document Version

Whenever project version updates, please also update the document version at docs/conf.py to target the upcom-
ing release.

For example,

release = '1.2.0'

Update Dependency List

Kyuubi uses the dev/dependencyList file to indicate what upstream dependencies will actually go to the server-
side classpath.

For Pull requests, a linter for dependency check will be automatically executed in GitHub Actions.

You can run build/dependency.sh locally first to detect the potential dependency change first.

If the changes look expected, run build/dependency.sh --replace to update dev/dependencyList in
your Pull request.

132 Chapter 6. High Availability

Kyuubi, Release 1.3.0

6.11 Community

6.11.1 Collaborators

PPMC Members and Committers

See full contributor list at contributors.

6.11.2 Contribution Guidelines

Kyuubi is an Apache License v2.0 open source software.

Contributing to Kyuubi including source code, documents, tests e.t.c. means that you agree to the Apache License
v2.0.

• Better to search the issue history first before reporting an Issue

• Better to create an Issue to describe the feature or bug first before make a pull request.

• Better to use English for world widely understanding.

• Ask us anything

Before you start, please read the Code of Conduct carefully, familiarize yourself with it and refer to it whenever you
need it.

Prepare github environment

If you are new to submit a Pull Request, the follow steps are helpful to you.

1. An available git, you can run git version if you are not sure if you have

2. Fork Kyuubi on github, now you have a cloned Kyuubi repo

3. Clone your Kyuubi repo with cmd git clone https://github.com/${yourname}/kyuubi.git

4. Create a new branch with cmd git checkout -b test-branch

5. Modify the code you want

6. Commit and push code to your Kyuubi repo with command git commit -am "comment"; git push
test-branch test-branch

7. Back to Kyuubi, you can see a banner about new pull request

8. Now we can create a pull request to Kyuubi

Creating a Pull Request

When creating a Pull Request, you will automatically get the template below.

Fulfilling it thoroughly can improve the speed of the review process.

<!--
Thanks for sending a pull request!

Here are some tips for you:
1. If this is your first time, please read our contributor guidelines:

https://kyuubi.apache.org/docs/latest/community/contributions.html

(continues on next page)

6.11. Community 133

https://people.apache.org/phonebook.html?podling=kyuubi
https://github.com/apache/incubator-kyuubi/graphs/contributors
https://github.com/apache/incubator-kyuubi/blob/master/LICENSE
http://www.apache.org/foundation/policies/conduct.html
https://git-scm.com/downloads
https://github.com/apache/incubator-kyuubi
https://github.com/apache/incubator-kyuubi

Kyuubi, Release 1.3.0

(continued from previous page)

-->

Which issue are you going to fix?
<!--
Replace ${ID} below with the actual issue id from
https://github.com/apache/incubator-kyuubi/issues,
so that the issue will be linked and automatically closed after merging
-->

Fixes #${ID}

Why are the changes needed?
<!--
Please clarify why the changes are needed. For instance,

1. If you add a feature, you can talk about the user case of it.
2. If you fix a bug, you can clarify why it is a bug.

-->

How was this patch tested?
- [] Add some test cases that check the changes thoroughly including negative and
→˓positive cases if possible

- [] Add screenshots for manual tests if appropriate

- [] [Run test](https://kyuubi.apache.org/docs/latest/develop_tools/testing.html
→˓#running-tests) locally before make a pull request

6.11.3 Kyuubi Project Improvement Proposals (KPIP)

The purpose of a KPIP is to inform and involve the user community in significant improvements to the Kyuubi code-
base throughout the development process to increase user needs.

KPIPs should be used for significant user-facing or cross-cutting changes, not minor incremental improvements. When
in doubt, if a committer thinks a change needs a KPIP, it does.

134 Chapter 6. High Availability

Kyuubi, Release 1.3.0

What is a KPIP?

A KPIP is similar to a product requirement document commonly used in product management.

A KPIP:

• Is a ticket labeled “KPIP” proposing a major improvement or change to Kyuubi

• Follows the template defined below

• Includes discussions on the ticket about the proposal

Who?

Any community member can help by discussing whether a KPIP is likely to meet their needs and propose KPIPs.

Contributors can help by discussing whether a KPIP is likely to be technically feasible.

Committers can help by discussing whether a KPIP aligns with long-term project goals, and by shepherding KPIPs.

KPIP Author is any community member who authors a KPIP and is committed to pushing the change through the
entire process. KPIP authorship can be transferred.

KPIP Shepherd is a PMC member who is committed to shepherding the proposed change throughout the entire
process. Although the shepherd can delegate or work with other committers in the development process, the shepherd
is ultimately responsible for the success or failure of the KPIP. Responsibilities of the shepherd include, but are not
limited to:

• Be the advocate for the proposed change

• Help push forward on design and achieve consensus among key stakeholders

• Review code changes, making sure the change follows project standards

• Get feedback from users and iterate on the design & implementation

• Uphold the quality of the changes, including verifying whether the changes satisfy the goal of the KPIP and are
absent of critical bugs before releasing them

KPIP Process

Proposing a KPIP

Anyone may propose a KPIP, using the document template below. Please only submit a KPIP if you are willing to
help, at least with discussion.

If a KPIP is too small or incremental and should have been done through the normal JIRA process, a committer should
remove the KPIP label.

6.11. Community 135

Kyuubi, Release 1.3.0

KPIP Document Template

A KPIP document is a short document with a few questions, inspired by the Heilmeier Catechism:

• Q1. What are you trying to do? Articulate your objectives using absolutely no jargon.

• Q2. What problem is this proposal NOT designed to solve?

• Q3. How is it done today, and what are the limits of current practice?

• Q4. What is new in your approach, and why do you think it will be successful?

• Q5. Who cares? If you are successful, what difference will it make?

• Q6. What are the risks?

• Q7. How long will it take?

• Q8. What are the mid-term and final “exams” to check for success?

• Appendix A. Proposed API Changes. Optional section defining APIs changes, if any. Backward and forward
compatibility must be taken into account.

• Appendix B. Optional Design Sketch: How are the goals going to be accomplished? Give sufficient technical
detail to allow a contributor to judge whether it’s likely to be feasible. Note that this is not a full design document.

• Appendix C. Optional Rejected Designs: What alternatives were considered? Why were they rejected? If no
alternatives have been considered, the problem needs more thought.

Discussing a KPIP

All discussions of a KPIP should take place in a public forum, preferably the discussion attached to the ticket. Any
discussion that happen offline should be made available online for the public via meeting notes summarizing the
discussions.

Implementing a KPIP

Implementation should take place via the contribution guidelines. Changes that require KPIPs typically also require
design documents to be written and reviewed.

6.11.4 Kyuubi Release Guide

Introduction

The Apache Kyuubi (Incubating) project periodically declares and publishes releases. A release is one or more pack-
ages of the project artifact(s) that are approved for general public distribution and use. They may come with various
degrees of caveat regarding their perceived quality and potential for change, such as “alpha”, “beta”, “incubating”,
“stable”, etc.

The Kyuubi community treats releases with great importance. They are a public face of the project and most users
interact with the project only through the releases. Releases are signed off by the entire Kyuubi community in a public
vote.

Each release is executed by a Release Manager, who is selected among the Kyuubi committers. This document
describes the process that the Release Manager follows to perform a release. Any changes to this process should be
discussed and adopted on the dev mailing list.

136 Chapter 6. High Availability

mailto:dev@kyuubi.apache.org

Kyuubi, Release 1.3.0

Please remember that publishing software has legal consequences. This guide complements the foundation-wide
Product Release Policy and Release Distribution Policy.

Overview

The release process consists of several steps:

1. Decide to release

2. Prepare for the release

3. Cut branch off for major release

4. Build a release candidate

5. Vote on the release candidate

6. If necessary, fix any issues and go back to step 3.

7. Finalize the release

8. Promote the release

Decide to release

Deciding to release and selecting a Release Manager is the first step of the release process. This is a consensus-based
decision of the entire community.

Anybody can propose a release on the dev mailing list, giving a solid argument and nominating a committer as the Re-
lease Manager (including themselves). There’s no formal process, no vote requirements, and no timing requirements.
Any objections should be resolved by consensus before starting the release.

In general, the community prefers to have a rotating set of 1-2 Release Managers. Keeping a small core set of
managers allows enough people to build expertise in this area and improve processes over time, without Release
Managers needing to re-learn the processes for each release. That said, if you are a committer interested in serving the
community in this way, please reach out to the community on the dev mailing list.

Checklist to proceed to the next step

1. Community agrees to release

2. Community selects a Release Manager

Prepare for the release

Before your first release, you should perform one-time configuration steps. This will set up your security keys for
signing the release and access to various release repositories.

6.11. Community 137

https://www.apache.org/dev/release.html
https://www.apache.org/dev/release-distribution
mailto:dev@kyuubi.apache.org
mailto:dev@kyuubi.apache.org

Kyuubi, Release 1.3.0

One-time setup instructions

ASF authentication

The environments ASF_USERNAME and ASF_PASSWORD have been used in several places and several times in the
release process, you can either one-time set up them in ~/.bashrc or ~/.zshrc, or export them in terminal every
time.

export ASF_USERNAME=<your apache username>
export ASF_PASSWORD=<your apache password>

Java Home

An available environment variable JAVA_HOME, you can do echo $JAVA_HOME to check it. Note that, the Java
version should be 8.

Subversion

Besides on git, svn is also required for Apache release, please refer to https://www.apache.org/dev/version-
control.html#https-svn for details.

GPG Key

You need to have a GPG key to sign the release artifacts. Please be aware of the ASF-wide release signing guidelines.
If you don’t have a GPG key associated with your Apache account, please create one according to the guidelines.

Determine your Apache GPG Key and Key ID, as follows:

gpg --list-keys --keyid-format SHORT

This will list your GPG keys. One of these should reflect your Apache account, for example:

pub rsa4096 2021-08-30 [SC]
8FC8075E1FDC303276C676EE8001952629BCC75D

uid [ultimate] Cheng Pan <chengpan@apache.org>
sub rsa4096 2021-08-30 [E]

Here, the key ID is the 8-digit hex string in the pub line: 29BCC75D.

To export the PGP public key, using:

gpg --armor --export 29BCC75D

If you have more than one gpg key, you can specify the default key as the following:

echo 'default-key <key-fpr>' > ~/.gnupg/gpg.conf

The last step is to update the KEYS file with your code signing key https://www.apache.org/dev/openpgp.html#export-
public-key

138 Chapter 6. High Availability

https://www.apache.org/dev/release-signing.html

Kyuubi, Release 1.3.0

svn checkout --depth=files "https://dist.apache.org/repos/dist/dev/incubator/kyuubi"
→˓work/svn-kyuubi
(gpg --list-sigs "${ASF_USERNAME}@apache.org" && gpg --export --armor "${ASF_USERNAME}
→˓@apache.org") >> KEYS
svn commit --username "${ASF_USERNAME}" --password "${ASF_PASSWORD}" --message
→˓"Update KEYS" work/svn-kyuubi

Cut branch iff for major release

Kyuubi use version pattern {MAJOR_VERSION}.{MINOR_VERSION}.{PATCH_VERSION}[-{OPTIONAL_SUFFIX}],
e.g. 1.3.0-incubating. Major Release means MAJOR_VERSION or MINOR_VERSION changed, and Patch
Release means PATCH_VERSION changed.

The main step towards preparing a major release is to create a release branch. This is done via standard Git branching
mechanism and should be announced to the community once the branch is created.

The release branch pattern is branch-{MAJOR_VERSION}.{MINOR_VERSION}, e.g. branch-1.3.

After cutting release branch, don’t forget bump version in master branch.

Build a release candidate

1. Set environment variables.

export RELEASE_VERSION=<release version, e.g. 1.3.0-incubating>
export RELEASE_RC_NO=<RC number, e.g. 0>

1. Bump version.

build/mvn versions:set -DgenerateBackupPoms=false \
-DnewVersion="${RELEASE_VERSION}" \
-Pspark-3.1,spark-block-cleaner

git commit -am "[RELEASE] Bump ${RELEASE_VERSION}"

1. Create a git tag for the release candidate.

The tag pattern is v${RELEASE_VERSION}-rc${RELEASE_RC_NO}, e.g. v1.3.0-incubating-rc0

1. Package the release binaries & sources, and upload them to the Apache staging SVN repo. Publish jars to the
Apache staging Maven repo.

build/release/release.sh publish

Vote on the release candidate

The release voting takes place on the Apache Kyuubi (Incubating) developers list (the (P)PMC is voting).

• If possible, attach a draft of the release notes with the email.

• Recommend represent voting closing time in UTC format.

• Make sure the email is in text format and the links are correct

Once the vote is done, you should also send out a summary email with the totals, with a subject that looks something
like [VOTE][RESULT]

6.11. Community 139

Kyuubi, Release 1.3.0

Finalize the Release

Be Careful!

THIS STEP IS IRREVERSIBLE so make sure you selected the correct staging repository. Once you move the
artifacts into the release folder, they cannot be removed.

After the vote passes, to upload the binaries to Apache mirrors, you move the binaries from dev directory (this should
be where they are voted) to release directory. This “moving” is the only way you can add stuff to the actual release
directory. (Note: only (P)PMC members can move to release directory)

Move the sub-directory in “dev” to the corresponding directory in “release”. If you’ve added your signing key to the
KEYS file, also update the release copy.

build/release/release.sh finalize

Verify that the resources are present in https://www.apache.org/dist/incubator/kyuubi/. It may take a while for them to
be visible. This will be mirrored throughout the Apache network.

For Maven Central Repository, you can Release from the Apache Nexus Repository Manager. Log in, open
Staging Repositories, find the one voted on, select and click Release and confirm. If successful, it should
show up under https://repository.apache.org/content/repositories/releases/org/apache/kyuubi/ and the same under
https://repository.apache.org/content/groups/maven-staging-group/org/apache/kyuubi/ (look for the correct release
version). After some time this will be sync’d to Maven Central automatically.

Promote the release

Update Website

Fork and clone Apache Kyuubi website

1. Add a new markdown file in src/news/

2. Add a new markdown file in src/release/

3. Follow Build Document to build documents, then copy apache/incubator-kyuubi’s folder
docs/_build/html to apache/incubator-kyuubi-website’s folder content/docs/
r{RELEASE_VERSION}

Create an Announcement

Once everything is working, create an announcement on the website and then send an e-mail to the mailing list. The
mailing list includes: announce@apache.org, dev@kyuubi.apache.org, user@spark.apache.org.

Enjoy an adult beverage of your choice, and congratulations on making a Kyuubi release.

140 Chapter 6. High Availability

https://repository.apache.org/
https://search.maven.org/
https://github.com/apache/incubator-kyuubi-website

Kyuubi, Release 1.3.0

6.11.5 Community

Watch Star Fork Issue Download

6.12 Appendixes

6.12.1 Terminologies

Kyuubi

Kyuubi is a unified multi-tenant JDBC interface for large-scale data processing and analytics, built on top of Apache
Spark.

JDBC

The Java Database Connectivity (JDBC) API is the industry standard for database-independent connec-
tivity between the Java programming language and a wide range of databases SQL databases and other
tabular data sources, such as spreadsheets or flat files. The JDBC API provides a call-level API for SQL-
based database access.

JDBC technology allows you to use the Java programming language to exploit “Write Once, Run Any-
where” capabilities for applications that require access to enterprise data. With a JDBC technology-
enabled driver, you can connect all corporate data even in a heterogeneous environment.

Typically, there is a gap between business development and big data analytics. If the two are forcefully coupled, it
would make the corresponding system difficult to operate and optimize. On the flip side, if decoupled, the values
of both can be maximized. Business experts can stay focused on their own business development, while Big Data
engineers can continuously optimize server-side performance and stability. Kyuubi combines the two seamlessly
through an easy-to-use JDBC interface.

6.12. Appendixes 141

Kyuubi, Release 1.3.0

Apache Hive

The Apache Hive ™ data warehouse software facilitates reading, writing, and managing large datasets
residing in distributed storage using SQL. Structure can be projected onto data already in storage. A
command line tool and JDBC driver are provided to connect users to Hive.

Kyuubi supports Hive JDBC driver, which helps you seamlessly migrate your slow queries from Hive to Spark SQL.

Apache Thrift

The Apache Thrift software framework, for scalable cross-language services development, combines a
software stack with a code generation engine to build services that work efficiently and seamlessly be-
tween C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk,
OCaml and Delphi and other languages.

Server

Server is a daemon process that handles concurrent connection and query requests and converting these requests into
various operations against the query engines to complete the responses to clients.

Aliases: Kyuubi Server / Kyuubi Instance / k.i.

ServerSpace

A ServerSpace is used to register servers and expose them together as a service layer to clients.

Engine

An engine handles all queries through Kyuubi servers. It is created in one Kyuubi server and can be shared with other
Kyuubi servers by registering itself to an engine namespace. All its capabilities are mainly powered by Spark SQL.

Aliases: Query Engine / Engine Instance / e.i.

EngineSpace

An EngineSpace is internally used by servers to register and interact with engines.

Apache Spark

Apache Spark™ is a unified analytics engine for large-scale data processing.

142 Chapter 6. High Availability

https://spark.apache.org/

Kyuubi, Release 1.3.0

Multi Tenancy

Kyuubi guarantees end-to-end multi-tenant isolation and sharing in the following pipeline

Client --> Kyuubi --> Query Engine(Spark) --> Resource Manager --> Data Storage Layer

High Availability / Load Balance

As an enterprise service, SLA commitment is essential. Deploying Kyuubi in High Availability (HA) mode helps you
guarantee that.

Apache Zookeeper

Apache ZooKeeper is an effort to develop and maintain an open-source server which enables highly
reliable distributed coordination.

Apache Curator

Apache Curator is a Java/JVM client library for Apache ZooKeeper, a distributed coordination service. It
includes a highlevel API framework and utilities to make using Apache ZooKeeper much easier and more
reliable. It also includes recipes for common use cases and extensions such as service discovery and a
Java 8 asynchronous DSL.

DataLake & LakeHouse

Kyuubi unifies DataLake & LakeHouse access in the simplest pure SQL way, meanwhile it’s also the securest way
with authentication and SQL standard authorization.

Apache Iceberg

Apache Iceberg is an open table format for huge analytic datasets. Iceberg adds tables to Trino and Spark
that use a high-performance format that works just like a SQL table.

Delta Lake

Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data
workloads.

6.12. Appendixes 143

Kyuubi, Release 1.3.0

Apache Hudi

Apache Hudi ingests & manages storage of large analytical datasets over DFS (hdfs or cloud stores).

144 Chapter 6. High Availability

	Multi-tenancy
	Ease of Use
	Run Anywhere
	High Performance
	Authentication & Authorization
	High Availability
	Quick Start
	Deploying Kyuubi
	Kyuubi Security Overview
	Client Documentation
	Integrations
	Monitoring
	SQL References
	Tools
	Overview
	Develop Tools
	Community
	Appendixes

