

Welcome

Apache Kyuubi™ is a distributed and multi-tenant gateway to provide serverless
SQL on Data Warehouses and Lakehouses.

Kyuubi builds distributed SQL query engines on top of various kinds of modern
computing frameworks, e.g.,
Apache Spark [https://spark.apache.org/],
Flink [https://flink.apache.org/],
Doris [https://doris.apache.org/],
Hive [https://hive.apache.org/],
and Trino [https://trino.io/], etc, to query massive datasets distributed
over fleets of machines from heterogeneous data sources.

The Kyuubi Server lane of the below swimlane divides our prospective users into
end users and administrators. On the one hand, it hides the technical details of
computing and storage from the end users. Thus, they can focus on their business and
data with familiar tools. On the other hand, it hides the complexity of business
logic from the administrators. Therefore, they can upgrade components on the server
side with zero maintenance downtime, optimize workloads with a clear view of what
end users are doing, ensure authentication, authorization, and auditing for both
cluster and data security, and so forth.

[image: _images/kyuubi_layers.drawio.png]
In general, the complete ecosystem of Kyuubi falls into the hierarchies shown in
the above figure, with each layer loosely coupled to the other. It’s a child’s play
to combine some of the components above to build a modern data stack. For example,
you can use Kyuubi, Spark and Iceberg [https://iceberg.apache.org/] to build
and manage Data Lakehouse with pure SQL for both data processing, e.g. ETL, and online analytics processing(OLAP), e.g. BI.
All workloads can be done on one platform, using one copy of data, with one SQL interface.

A Unified Gateway

The Server module plays the role of a unified gateway. The server enables simplified,
secure access to any cluster resource through an entry point to deploy different
workloads for end(remote) users. Behind this single entry, administrators have a single
point for configuration, security, and control of remote access to clusters. And end
users have an improved experience with seamless data processing with any the Kyuubi
engine they need.

Application Programming Interface

End users can use the application programming interface listed below for connectivity
and interoperation between supported clients and a Kyuubi server. The current implementations are:

	
	Hive Thrift Protocol
	
	A HiveServer2-compatible interface that allows end users to use a thrift
client(cross-language support, both tcp and http), a Java Database Connectivity(JDBC) interface over
thrift, or an Open Database Connectivity (ODBC) interface over a JDBC-to-ODBC bridge to communicate with Kyuubi.

	
	RESTful APIs
	
	It provides system management APIs, including engines, sessions, operations, and miscellaneous ones.

	It provides methods that allow clients to submit SQL queries and receive the query results, submit metadata requests and receive metadata results.

	It enables easy submission of self-contained applications for batch processing, such as Spark jobs.

	
	MySQL Protocol
	
	A MySQL-compatible interface that allows end users to use MySQL Connectors, such as Connector/J, to communicate with Kyuubi.

	
	We’ve planned to add more
	
	Please join our mailing lists if you have any ideas or questions.

Multi-tenancy

Kyuubi supports the end-to-end multi-tenancy. On the control plane, the Kyuubi server
provides a centralized authentication layer to reduce the risk of data and resource
breaches. It supports various protocols, such as LDAP and Kerberos, for securing networking
between clients and servers. On the data plane, the Kyuubi engines use the same trusted
client identities to instantiate themselves. The resource acquirement and data
and metadata access all happen within their own engine. Thus, cluster managers and storage
providers can easily guarantee data and resource security. Besides, Kyuubi also provides engine
authorization extensions to optimize the data security model to fine-grained row/column level.
Please see the security page for more information.

High Availability

Kyuubi is designed with High availability (HA), ensuring it operates continuously
without failure for a designated period. HA works to provide Kyuubi that meets an
agreed-upon operational performance level.

	
	Load balancing
	
	It becomes necessary for Kyuubi in a real-world production environment to ensure high availability because of multi-tenant access.

	It effectively prevents single point of failures.

	It helps achieve zero downtime for planned system maintenance

	
	Failure detectability
	
	Failures and system load of kyuubi server and engines are visible via metrics, logs, and so forth.

Serverless SQL and More

Serverless SQL on Lakehouses makes it easier for end users to gain insight
from the data universe and optimize data pipelines. It enables:

	The same user experience as an RDBMS using familiar SQL for various workloads.

	Extensive and secure data access capability across diverse data sources.

	High performance on large volumes of data with scalable computing resources.

Besides, Kyuubi also supports submissions of code snippets and self-contained applications serverlessly
for more advanced usage.

Ease of Use

End users could have an optimized experience exploring their data universe in a
serverless way, using either JDBC + SQL or REST + code. For most scenarios, the
superpower of corresponding engines, such as Spark, and Flink, is no longer necessary.
That is, most work related to deployment, runtime optimization, etc., should be done
by professionals on the Kyuubi server side. It is suitable for the following scenarios:

	
	Basic discovery and exploration
	
	Quickly reason about the data in various formats (Parquet, CSV, JSON, text)
in your data lake in cloud storage or an on-prem HDFS cluster.

	
	Lakehouse formation and analytics
	
	Easily build an ACID table storage layer via Hudi, Iceberg, or/and Delta Lake.

	
	Logical data warehouse
	
	Provide a relational abstraction on top of disparate data without ETL jobs,
from collecting to connecting.

Run Anywhere at Any Scale

Most of the Kyuubi engine types have a distributed backend or can schedule distributed
tasks at runtime. They can process data on single-node machines or clusters, such as
YARN and Kubernetes. Besides, the Kyuubi server also supports running on bare metal or
in a docker.

High Performance

Query performance is one of the critical factors in implementing Serverless SQL.
Implementing serviceability on state-of-the-art query engines for bigdata lays
the foundation for us to achieve this goal:

	State-of-the-art query engines

	Multiple application for high throughput

	Sharable execution runtime for low latency

	Server-side global and continuous optimization

	Auxiliary performance plugins, such as Z-Ordering,
Query Optimizer, and so on

Another goal of Serverless SQL is to make end users
need not or rarely care about tricky performance
optimization issues.

What’s Next

Admin Guide

	Quick Start
	Getting Started

	Getting Started with Helm

	Getting Started with Hive JDBC

	Configurations
	Environments

	Kyuubi Configurations

	Spark Configurations

	Flink Configurations

	Trino Configurations

	Logging

	Other Configurations

	User Defaults

	Deploying Kyuubi
	Basics

	Engines

	Security
	Authentication

	Authorization

	Kinit Auxiliary Service

	Hadoop Credentials Manager

	Monitoring
	1. Monitoring Kyuubi - Logging System

	2. Monitoring Kyuubi - Server Metrics

	3. Trouble Shooting

	Tools
	Kubernetes Tools Spark Block Cleaner

	Administrator CLI

	Kyuubi Administer Tool

User Guide

	Clients & APIs
	JDBC Drivers

	Command Line Interface(CLI)s

	Business Intelligence Tools and SQL IDEs

	ODBC Drivers

	Thrift APIs

	RESTful APIs and Clients

	Web UI

	Python

	Client Commons

Extension Guide

	Extensions
	Server Side Extensions

	Engine Side Extensions

Connectors

	Connectors
	Connectors for Spark SQL Query Engine

	Connectors For Flink SQL Query Engine

	Connectors for Hive SQL Query Engine

	Connectors For Trino SQL Engine

Kyuubi Insider

	Overview
	Architecture

	Kyuubi v.s. HiveServer2

	Kyuubi v.s. Spark Thrift JDBC/ODBC Server (STS)

Contributing

	Contributing Code
	Get Started

	Code Style Guide

	Building From Source

	Building A Runnable Distribution

	Running Tests

	Debugging Kyuubi

	Developer Tools

	IntelliJ IDEA Setup Guide

	Contributing Documentations
	Get Started

	Documentation Style Guide

	Building Documentation

Community

	Community
	Contributing to Apache Kyuubi

	Collaborators

	Kyuubi Release Guide

Appendix

	Appendixes
	1. Terminologies

Quick Start

Note

In this section, you will learn how to setup and interact with kyuubi quickly.

	Getting Started
	Requirements

	Installation

	Start Kyuubi

	Operate Clients

	Stop Kyuubi

	Getting Started with Helm
	Running Kyuubi with Helm

	Getting Started with Hive JDBC
	How to get the Kyuubi JDBC driver

	Connect to non-kerberized Kyuubi Server

	Connect to Kerberized Kyuubi Server

Getting Started

Note

This page covers how to start with kyuubi quickly on you
laptop in about 3~5 minutes.

Requirements

For quick start deployment, we need to prepare the following stuffs:

	A client that connects and submits queries to the server. Here, we use the
kyuubi beeline for demonstration.

	A server that serves clients and manages engines.

	An engine that is used to instantiate query execution environments. Here we
use Spark for demonstration.

These essential components are JVM-based applications. So, the JRE needs to be
pre-installed and the JAVA_HOME is correctly set to each component.

	Component

	Role

	Version

	Remarks

	Java

	JRE

	8/11/17

	Officially released against JDK8

	Kyuubi

	Gateway
Engine lib
Beeline

	1.8.0

	
	Kyuubi Server

	Kyuubi Engine

	Kyuubi Hive Beeline

	Spark

	Engine

	>=3.1

	A Spark distribution

	Flink

	Engine

	1.16/1.17/1.18

	A Flink distribution

	Trino

	Engine

	>=363

	A Trino cluster

	Doris

	Engine

	N/A

	A Doris cluster

	Hive

	Engine
Metastore

	
	3.1.x

	N/A

	
	A Hive distribution

	An optional and external metadata store,
whose version is decided by engines

	Zookeeper

	HA

	>=3.4.x

	

	Disk

	Storage

	N/A

	N/A

The other internal or external parts listed in the above sheet can be used individually
or all together. For example, you can use Kyuubi, Spark and Flink to build a streaming
data warehouse. And then, you can use Zookeeper to enable the load balancing for high
availability. The data could be stored in Hive, Apache Iceberg, or other DBMSs.

In what follows, we will only use Kyuubi and Spark.

Installation

Note

This following instructions are based on binary releases. If you start with
source releases, please refer to the page for building kyuubi.

Install Kyuubi

The official releases, binary- and source-, are archived on the
download page [https://kyuubi.apache.org/releases.html]. Please download the most recent stable release
to start.

To install Kyuubi, you need to unpack the tarball. For example,

$ tar zxf apache-kyuubi-1.8.0-bin.tgz

├── LICENSE
├── NOTICE
├── RELEASE
├── beeline-jars
├── bin
├── conf
| ├── kyuubi-defaults.conf.template
│ ├── kyuubi-env.sh.template
│ └── log4j2.properties.template
├── docker
│ ├── Dockerfile
│ ├── helm
│ ├── kyuubi-configmap.yaml
│ ├── kyuubi-deployment.yaml
│ ├── kyuubi-pod.yaml
│ └── kyuubi-service.yaml
├── externals
│ └── engines
├── jars
├── licenses
├── logs
├── pid
└── work

From top to bottom are:

	LICENSE: the APACHE LICENSE [https://www.apache.org/licenses/LICENSE-2.0], VERSION 2.0 we claim to obey.

	RELEASE: the build information of this package.

	NOTICE: the notice made by Apache Kyuubi Community about its project and dependencies.

	bin: the entry of the Kyuubi server with kyuubi as the startup script.

	conf: all the defaults used by Kyuubi Server itself or creating a session with engines.

	externals
- engines: contains all kinds of SQL engines that we support

	licenses: a bunch of licenses included.

	jars: packages needed by the Kyuubi server.

	logs: where the logs of the Kyuubi server locates.

	pid: stores the PID file of the Kyuubi server instance.

	work: the root of the working directories of all the forked sub-processes, a.k.a. SQL engines.

Install Spark

The official releases, binary- and source-, are archived on the
spark download page [https://spark.apache.org/downloads.html]. Please download the most recent stable
release to start.

Note

Currently, Kyuubi is compiled and pre-built against Spark 3 and Scala 2.12
You will probably meet runtime exceptions if you use Spark 2 or Spark with
unsupported Scala versions.

To install Spark, you need to unpack the tarball. For example,

$ tar zxf spark-3.3.2-bin-hadoop3.tgz

Configuration

The kyuubi-env.sh file is used to set system environment variables to the kyuubi
server process and engine processes it creates.

The kyuubi-defaults.conf file is used to set system properties to the kyuubi server
process and engine processes it creates.

Each file has a template lays in conf directory for your information. The following
are examples of the parameters necessary for a quick start with Spark.

	JAVA_HOME

$ echo 'export JAVA_HOME=/path/to/java' >> conf/kyuubi-env.sh

	SPARK_HOME

$ echo 'export SPARK_HOME=/path/to/spark' >> conf/kyuubi-env.sh

Start Kyuubi

$ bin/kyuubi start

If script above runs successfully, it will store the PID of the server instance
into pid/kyuubi-<username>-org.apache.kyuubi.server.KyuubiServer.pid.
And you are able to get the JDBC connection URL from the log file -
logs/kyuubi-<username>-org.apache.kyuubi.server.KyuubiServer-<hostname>.out.

For example,

Starting and exposing JDBC connection at: jdbc:hive2://localhost:10009/

If something goes wrong, you shall be able to find some clues in the log file too.

Note

Alternatively, it can run in the foreground, with the logs and other output
written to stdout/stderr. Both streams should be captured if using a
supervision system like supervisord.

bin/kyuubi run

Operate Clients

Kyuubi delivers a beeline client, enabling a similar experience to Apache Hive use cases.

Open Connections

Replace the host and port with the actual ones you’ve got in the step of server startup
for the following JDBC URL. The case below open a session for user named apache.

$ bin/beeline -u 'jdbc:hive2://localhost:10009/' -n apache

Note

Use –help to display the usage guide for the beeline tool.

$ bin/beeline --help

Execute Statements

After successfully connected with the server, you can run sql queries in the beeline
console. For instance,

> SHOW DATABASES;

You will see a wall of operation logs, and a result table in the beeline console.

omitted logs
+------------+
| namespace |
+------------+
| default |
+------------+
1 row selected (0.2 seconds)

Start Engines

Engines are launched by the server automatically without end users’ attention.

If you use the same user in the above case to create another connection, the
engine will be reused. You may notice that the time cost for connection here is
much shorter than the last round.

If you use a different user to create a new connection, another engine will be
started.

$ bin/beeline -u 'jdbc:hive2://localhost:10009/' -n kentyao

This may change depending on the engine share level you set.

Close Connections

Close the session between beeline and Kyuubi server by executing !quit, for example,

> !quit
Closing: 0: jdbc:hive2://localhost:10009/

Stop Engines

Engines are stop by the server automatically according engine lifecycle
without end users’ attention. Terminations of connections do not necessarily
mean terminations of engines. It depends on both the engine share level and
engine lifecycle.

Stop Kyuubi

Stop Kyuubi by running the following in the $KYUUBI_HOME directory:

$ bin/kyuubi stop

And then, you will see the Kyuubi server waving goodbye to you.

The Kyuubi server will be stopped immediately while
the engine will still be alive for a while.

If you start Kyuubi again before the engine terminates itself,
it will reconnect to the newly created one.

Getting Started with Helm

Running Kyuubi with Helm

Helm [https://helm.sh/] is the package manager for Kubernetes, it can be used to find, share, and use software built for Kubernetes.

Install Helm

Please go to Installing Helm [https://helm.sh/docs/intro/install/] page to get and install an appropriate release version for yourself.

Get Kyuubi Started

Install the chart

helm install kyuubi ${KYUUBI_HOME}/charts/kyuubi -n kyuubi --create-namespace

It will print release info with notes, including the ways to get Kyuubi accessed within Kubernetes cluster and exposed externally depending on the configuration provided.

NAME: kyuubi
LAST DEPLOYED: Sat Feb 11 20:59:00 2023
NAMESPACE: kyuubi
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The chart has been installed!

In order to check the release status, use:
 helm status kyuubi -n kyuubi
 or for more detailed info
 helm get all kyuubi -n kyuubi

******* Services *******

THRIFT_BINARY:
- To access kyuubi-thrift-binary service within the cluster, use the following URL:
 kyuubi-thrift-binary.kyuubi.svc.cluster.local
- To access kyuubi-thrift-binary service from outside the cluster for debugging, run the following command:
 kubectl port-forward svc/kyuubi-thrift-binary 10009:10009 -n kyuubi
 and use 127.0.0.1:10009

Uninstall the chart

helm uninstall kyuubi -n kyuubi

Configure chart release

Specify configuration properties using --set flag.
For example, to install the chart with replicaCount set to 1, use the following command:

helm install kyuubi ${KYUUBI_HOME}/charts/kyuubi -n kyuubi --create-namespace --set replicaCount=1

Also, custom values file can be used to override default property values. For example, create myvalues.yaml to specify replicaCount and resources:

replicaCount: 1

resources:
 requests:
 cpu: 2
 memory: 4Gi
 limits:
 cpu: 4
 memory: 10Gi

and use it to override default chart values with -f flag:

helm install kyuubi ${KYUUBI_HOME}/charts/kyuubi -n kyuubi --create-namespace -f myvalues.yaml

Access logs

List all pods in the release namespace:

kubectl get pod -n kyuubi

Find Kyuubi pods:

NAME READY STATUS RESTARTS AGE
kyuubi-5b6d496c98-kbhws 1/1 Running 0 38m
kyuubi-5b6d496c98-lqldk 1/1 Running 0 38m

Then, use pod name to get logs:

kubectl logs kyuubi-5b6d496c98-kbhws -n kyuubi

Getting Started with Hive JDBC

How to get the Kyuubi JDBC driver

Kyuubi Thrift API is fully compatible with HiveServer2, so technically, it allows to use any Hive JDBC driver to connect
Kyuubi Server. But it’s recommended to use Kyuubi Hive JDBC driver, which is forked from
Hive 3.1.x JDBC driver, aims to support some missing functionalities of the original Hive JDBC driver.

The driver is available from Maven Central:

<dependency>
 <groupId>org.apache.kyuubi</groupId>
 <artifactId>kyuubi-hive-jdbc-shaded</artifactId>
 <version>1.7.0</version>
</dependency>

Connect to non-kerberized Kyuubi Server

The following java code connects directly to the Kyuubi Server by JDBC without using kerberos authentication.

package org.apache.kyuubi.examples;

import java.sql.*;

public class KyuubiJDBC {

 private static String driverName = "org.apache.kyuubi.jdbc.KyuubiHiveDriver";
 private static String kyuubiJdbcUrl = "jdbc:kyuubi://localhost:10009/default;";

 public static void main(String[] args) throws SQLException {
 try (Connection conn = DriverManager.getConnection(kyuubiJdbcUrl)) {
 try (Statement stmt = conn.createStatement()) {
 try (ResultSet rs = stmt.executeQuery("show databases")) {
 while (rs.next()) {
 System.out.println(rs.getString(1));
 }
 }
 }
 }
 }
}

Connect to Kerberized Kyuubi Server

The following Java code uses a keytab file to login and connect to Kyuubi Server by JDBC.

package org.apache.kyuubi.examples;

import java.sql.*;

public class KyuubiJDBCDemo {

 private static String driverName = "org.apache.kyuubi.jdbc.KyuubiHiveDriver";
 private static String kyuubiJdbcUrlTemplate = "jdbc:kyuubi://localhost:10009/default;" +
 "kyuubiClientPrincipal=%s;kyuubiClientKeytab=%s;kyuubiServerPrincipal=%s";

 public static void main(String[] args) throws SQLException {
 String clientPrincipal = args[0]; // Kerberos principal
 String clientKeytab = args[1]; // Keytab file location
 String serverPrincipal = args[2]; // Kerberos principal used by Kyuubi Server
 String kyuubiJdbcUrl = String.format(kyuubiJdbcUrlTemplate, clientPrincipal, clientKeytab, serverPrincipal);
 try (Connection conn = DriverManager.getConnection(kyuubiJdbcUrl)) {
 try (Statement stmt = conn.createStatement()) {
 try (ResultSet rs = stmt.executeQuery("show databases")) {
 while (rs.next()) {
 System.out.println(rs.getString(1));
 }
 }
 }
 }
 }
}

Configurations

Kyuubi provides several ways to configure the system and corresponding engines.

Environments

You can configure the environment variables in $KYUUBI_HOME/conf/kyuubi-env.sh, e.g, JAVA_HOME, then this java runtime will be used both for Kyuubi server instance and the applications it launches. You can also change the variable in the subprocess’s env configuration file, e.g.$SPARK_HOME/conf/spark-env.sh to use more specific ENV for SQL engine applications. see $KYUUBI_HOME/conf/kyuubi-env.sh.template as an example.
For the environment variables that only needed to be transferred into engine side, you can set it with a Kyuubi configuration item formatted kyuubi.engineEnv.VAR_NAME. For example, with kyuubi.engineEnv.SPARK_DRIVER_MEMORY=4g, the environment variable SPARK_DRIVER_MEMORY with value 4g would be transferred into engine side. With kyuubi.engineEnv.SPARK_CONF_DIR=/apache/confs/spark/conf, the value of SPARK_CONF_DIR on the engine side is set to /apache/confs/spark/conf.

Kyuubi Configurations

You can configure the Kyuubi properties in $KYUUBI_HOME/conf/kyuubi-defaults.conf, see $KYUUBI_HOME/conf/kyuubi-defaults.conf.template as an example.

Authentication

	Key
	Default
	Meaning
	Type
	Since

	kyuubi.authentication
	NONE
	A comma-separated list of client authentication types. 	NOSASL: raw transport.
 	NONE: no authentication check.
 	KERBEROS: Kerberos/GSSAPI authentication.
 	CUSTOM: User-defined authentication.
 	JDBC: JDBC query authentication.
 	LDAP: Lightweight Directory Access Protocol authentication.

The following tree describes the catalog of each option. 	NOSASL
 	SASL 	SASL/PLAIN
 	NONE
 	LDAP
 	JDBC
 	CUSTOM

 	SASL/GSSAPI 	KERBEROS

 Note that: for SASL authentication, KERBEROS and PLAIN auth types are supported at the same time, and only the first specified PLAIN auth type is valid.
	set
	1.0.0

	kyuubi.authentication.custom.class
	<undefined>
	User-defined authentication implementation of org.apache.kyuubi.service.authentication.PasswdAuthenticationProvider
	string
	1.3.0

	kyuubi.authentication.jdbc.driver.class
	<undefined>
	Driver class name for JDBC Authentication Provider.
	string
	1.6.0

	kyuubi.authentication.jdbc.password
	<undefined>
	Database password for JDBC Authentication Provider.
	string
	1.6.0

	kyuubi.authentication.jdbc.query
	<undefined>
	Query SQL template with placeholders for JDBC Authentication Provider to execute. Authentication passes if the result set is not empty.The SQL statement must start with the SELECT clause. Available placeholders are ${user} and ${password}.
	string
	1.6.0

	kyuubi.authentication.jdbc.url
	<undefined>
	JDBC URL for JDBC Authentication Provider.
	string
	1.6.0

	kyuubi.authentication.jdbc.user
	<undefined>
	Database user for JDBC Authentication Provider.
	string
	1.6.0

	kyuubi.authentication.ldap.baseDN
	<undefined>
	LDAP base DN.
	string
	1.7.0

	kyuubi.authentication.ldap.binddn
	<undefined>
	The user with which to bind to the LDAP server, and search for the full domain name of the user being authenticated. This should be the full domain name of the user, and should have search access across all users in the LDAP tree. If not specified, then the user being authenticated will be used as the bind user. For example: CN=bindUser,CN=Users,DC=subdomain,DC=domain,DC=com
	string
	1.7.0

	kyuubi.authentication.ldap.bindpw
	<undefined>
	The password for the bind user, to be used to search for the full name of the user being authenticated. If the username is specified, this parameter must also be specified.
	string
	1.7.0

	kyuubi.authentication.ldap.customLDAPQuery
	<undefined>
	A full LDAP query that LDAP Atn provider uses to execute against LDAP Server. If this query returns a null resultset, the LDAP Provider fails the Authentication request, succeeds if the user is part of the resultset.For example: (&(objectClass=group)(objectClass=top)(instanceType=4)(cn=Domain*)), (&(objectClass=person)(|(sAMAccountName=admin)(|(memberOf=CN=Domain Admins,CN=Users,DC=domain,DC=com)(memberOf=CN=Administrators,CN=Builtin,DC=domain,DC=com))))
	string
	1.7.0

	kyuubi.authentication.ldap.domain
	<undefined>
	LDAP domain.
	string
	1.0.0

	kyuubi.authentication.ldap.groupClassKey
	groupOfNames
	LDAP attribute name on the group entry that is to be used in LDAP group searches. For example: group, groupOfNames or groupOfUniqueNames.
	string
	1.7.0

	kyuubi.authentication.ldap.groupDNPattern
	<undefined>
	COLON-separated list of patterns to use to find DNs for group entities in this directory. Use %s where the actual group name is to be substituted for. For example: CN=%s,CN=Groups,DC=subdomain,DC=domain,DC=com.
	string
	1.7.0

	kyuubi.authentication.ldap.groupFilter
	
	COMMA-separated list of LDAP Group names (short name not full DNs). For example: HiveAdmins,HadoopAdmins,Administrators
	set
	1.7.0

	kyuubi.authentication.ldap.groupMembershipKey
	member
	LDAP attribute name on the group object that contains the list of distinguished names for the user, group, and contact objects that are members of the group. For example: member, uniqueMember or memberUid
	string
	1.7.0

	kyuubi.authentication.ldap.guidKey
	uid
	LDAP attribute name whose values are unique in this LDAP server. For example: uid or CN.
	string
	1.2.0

	kyuubi.authentication.ldap.url
	<undefined>
	SPACE character separated LDAP connection URL(s).
	string
	1.0.0

	kyuubi.authentication.ldap.userDNPattern
	<undefined>
	COLON-separated list of patterns to use to find DNs for users in this directory. Use %s where the actual group name is to be substituted for. For example: CN=%s,CN=Users,DC=subdomain,DC=domain,DC=com.
	string
	1.7.0

	kyuubi.authentication.ldap.userFilter
	
	COMMA-separated list of LDAP usernames (just short names, not full DNs). For example: hiveuser,impalauser,hiveadmin,hadoopadmin
	set
	1.7.0

	kyuubi.authentication.ldap.userMembershipKey
	<undefined>
	LDAP attribute name on the user object that contains groups of which the user is a direct member, except for the primary group, which is represented by the primaryGroupId. For example: memberOf
	string
	1.7.0

	kyuubi.authentication.sasl.qop
	auth
	Sasl QOP enable higher levels of protection for Kyuubi communication with clients. 	auth - authentication only (default)
 	auth-int - authentication plus integrity protection
 	auth-conf - authentication plus integrity and confidentiality protection. This is applicable only if Kyuubi is configured to use Kerberos authentication.

	string
	1.0.0

Backend

	Key
	Default
	Meaning
	Type
	Since

	kyuubi.backend.engine.exec.pool.keepalive.time
	PT1M
	Time(ms) that an idle async thread of the operation execution thread pool will wait for a new task to arrive before terminating in SQL engine applications
	duration
	1.0.0

	kyuubi.backend.engine.exec.pool.shutdown.timeout
	PT10S
	Timeout(ms) for the operation execution thread pool to terminate in SQL engine applications
	duration
	1.0.0

	kyuubi.backend.engine.exec.pool.size
	100
	Number of threads in the operation execution thread pool of SQL engine applications
	int
	1.0.0

	kyuubi.backend.engine.exec.pool.wait.queue.size
	100
	Size of the wait queue for the operation execution thread pool in SQL engine applications
	int
	1.0.0

	kyuubi.backend.server.event.json.log.path
	file:///tmp/kyuubi/events
	The location of server events go for the built-in JSON logger
	string
	1.4.0

	kyuubi.backend.server.event.kafka.close.timeout
	PT5S
	Period to wait for Kafka producer of server event handlers to close.
	duration
	1.8.0

	kyuubi.backend.server.event.kafka.topic
	<undefined>
	The topic of server events go for the built-in Kafka logger
	string
	1.8.0

	kyuubi.backend.server.event.loggers
	
	A comma-separated list of server history loggers, where session/operation etc events go. 	JSON: the events will be written to the location of kyuubi.backend.server.event.json.log.path
 	KAFKA: the events will be serialized in JSON format and sent to topic of kyuubi.backend.server.event.kafka.topic. Note: For the configs of Kafka producer, please specify them with the prefix: kyuubi.backend.server.event.kafka.. For example, kyuubi.backend.server.event.kafka.bootstrap.servers=127.0.0.1:9092
 	JDBC: to be done
 	CUSTOM: User-defined event handlers.

 Note that: Kyuubi supports custom event handlers with the Java SPI. To register a custom event handler, the user needs to implement a class which is a child of org.apache.kyuubi.events.handler.CustomEventHandlerProvider which has a zero-arg constructor.
	seq
	1.4.0

	kyuubi.backend.server.exec.pool.keepalive.time
	PT1M
	Time(ms) that an idle async thread of the operation execution thread pool will wait for a new task to arrive before terminating in Kyuubi server
	duration
	1.0.0

	kyuubi.backend.server.exec.pool.shutdown.timeout
	PT10S
	Timeout(ms) for the operation execution thread pool to terminate in Kyuubi server
	duration
	1.0.0

	kyuubi.backend.server.exec.pool.size
	100
	Number of threads in the operation execution thread pool of Kyuubi server
	int
	1.0.0

	kyuubi.backend.server.exec.pool.wait.queue.size
	100
	Size of the wait queue for the operation execution thread pool of Kyuubi server
	int
	1.0.0

Batch

	Key
	Default
	Meaning
	Type
	Since

	kyuubi.batch.application.check.interval
	PT5S
	The interval to check batch job application information.
	duration
	1.6.0

	kyuubi.batch.application.starvation.timeout
	PT3M
	Threshold above which to warn batch application may be starved.
	duration
	1.7.0

	kyuubi.batch.conf.ignore.list
	
	A comma-separated list of ignored keys for batch conf. If the batch conf contains any of them, the key and the corresponding value will be removed silently during batch job submission. Note that this rule is for server-side protection defined via administrators to prevent some essential configs from tampering. You can also pre-define some config for batch job submission with the prefix: kyuubi.batchConf.[batchType]. For example, you can pre-define spark.master for the Spark batch job with key kyuubi.batchConf.spark.spark.master.
	set
	1.6.0

	kyuubi.batch.session.idle.timeout
	PT6H
	Batch session idle timeout, it will be closed when it's not accessed for this duration
	duration
	1.6.2

Credentials

	Key
	Default
	Meaning
	Type
	Since

	kyuubi.credentials.check.interval
	PT5M
	The interval to check the expiration of cached

 Deploying Kyuubi

Deploying Kyuubi

In this section, you will learn how to deploy Kyuubi against different platforms.

Basics

	Deploy Kyuubi On Kubernetes
	Requirements

	Kyuubi Official Docker Image

	Build Kyuubi Docker Image

	Deploy

	Config

	Connect

	TODO

	Integration with Hive Metastore
	Requirements

	Default Behavior

	Related Configurations

	Activate Configurations

	Version Compatibility

	Further Readings

	Kyuubi High Availability Guide
	HA Architecture

	System-side Deployment

	Client-side Usage

	How to Hot Upgrade Kyuubi Server

	Kyuubi Migration Guide
	Upgrading from Kyuubi 1.7 to 1.8

	Upgrading from Kyuubi 1.7.1 to 1.7.2

	Upgrading from Kyuubi 1.7.0 to 1.7.1

	Upgrading from Kyuubi 1.6 to 1.7

	Upgrading from Kyuubi 1.6.0 to 1.6.1

	Upgrading from Kyuubi 1.5 to 1.6

Engines

	Deploy Kyuubi engines on YARN
	Deploy Kyuubi Spark Engine on YARN

	Deploy Kyuubi Flink Engine on YARN

	Deploy Kyuubi Hive Engine on YARN

	Deploy Kyuubi engines on Kubernetes
	Requirements

	Configurations

	The Share Level Of Kyuubi Engines
	Why do we need this feature?

	The current supported share levels

	Related Configurations

	Conclusion

	The TTL Of Kyuubi Engines
	The Big Contributors Of Resource Waste

	TTL Types In Kyuubi Engines

	Configurations

	The Spark SQL Engine Configuration Guide
	How To Use Spark Dynamic Resource Allocation (DRA) in Kyuubi

	How To Use Spark Adaptive Query Execution (AQE) in Kyuubi

	Solution for Big Result Sets

 Deploy Kyuubi On Kubernetes

Deploy Kyuubi On Kubernetes

Requirements

If you want to deploy Kyuubi on Kubernetes, you’d better get a sense of the following things.

	Use Kyuubi official docker image or build Kyuubi docker image

	An active Kubernetes cluster

	Reading About Deploy Kyuubi engines on Kubernetes

	Kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]

	KubeConfig of the target cluster

Kyuubi Official Docker Image

You can find the official docker image at Apache Kyuubi Docker Hub [https://registry.hub.docker.com/r/apache/kyuubi].

Build Kyuubi Docker Image

You can build custom Docker images from the ${KYUUBI_HOME}/bin/docker-image-tool.sh contained in the binary package.

Examples:

 - Build and push image with tag "v1.4.0" to docker.io/myrepo
 $0 -r docker.io/myrepo -t v1.4.0 build
 $0 -r docker.io/myrepo -t v1.4.0 push

 - Build and push with tag "v1.4.0" and Spark-3.2.1 as base image to docker.io/myrepo
 $0 -r docker.io/myrepo -t v1.4.0 -b BASE_IMAGE=repo/spark:3.2.1 build
 $0 -r docker.io/myrepo -t v1.4.0 push

 - Build and push for multiple archs to docker.io/myrepo
 $0 -r docker.io/myrepo -t v1.4.0 -X build

 - Build with Spark placed "/path/spark"
 $0 -s /path/spark build

 - Build with Spark Image myrepo/spark:3.1.0
 $0 -S /opt/spark -b BASE_IMAGE=myrepo/spark:3.1.0 build

${KYUUBI_HOME}/bin/docker-image-tool.sh use Kyuubi Version as default docker tag and always build ${repo}/kyuubi:${tag} image.

The script can also help build external Spark into a Kyuubi image that acts as a client for submitting tasks by -s ${SPARK_HOME}.

Of course, if you have an image that contains the Spark binary package, you don’t have to copy Spark locally. Make your Spark Image as BASE_IMAGE by using the -S ${SPARK_HOME_IN_DOCKER} and -b BASE_IMAGE=${SPARK_IMAGE} arguments.

You can use ${KYUUBI_HOME}/bin/docker-image-tool.sh -h for more parameters.

Deploy

Multiple YAML files are provided under ${KYUUBI_HOME}/docker/ to help you deploy Kyuubi.

You can deploy single-node Kyuubi through ${KYUUBI_HOME}/docker/kyuubi-pod.yaml or ${KYUUBI_HOME}/docker/kyuubi-deployment.yaml.

Also, you can use ${KYUUBI_HOME}/docker/kyuubi-service.yaml to deploy Kyuubi Service.

[Optional] ServiceAccount

According to Kubernetes RBAC [https://kubernetes.io/docs/reference/access-authn-authz/rbac/], we need to give kyuubi server the corresponding kubernetes privileges for created/list/delete engine pods in kubernetes.

You should create your serviceAccount (or reuse account with the appropriate privileges) and set your serviceAccountName for kyuubi pod, which you can find template in ${KYUUBI_HOME}/docker/kyuubi-deployment.yaml or ${KYUUBI_HOME}/docker/kyuubi-pod.yaml.

For example, you can create serviceAccount by following command:

kubectl create serviceAccount kyuubi -n <your namespace>

kubectl create rolebinding kyuubi-role --role=edit --serviceAccount=<your namespace>:kyuubi --namespace=<your namespace>

See more related details in Using RBAC Authorization [https://kubernetes.io/docs/reference/access-authn-authz/rbac/] and Configure Service Accounts for Pods [https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/].

Config

You can configure Kyuubi the old-fashioned way by placing kyuubi-defaults.conf inside the image. Kyuubi does not recommend using this way on Kubernetes.

Kyuubi provide ${KYUUBI_HOME}/docker/kyuubi-configmap.yaml to build Configmap for Kyuubi.

You can find out how to use it in the comments inside the above file.

If you want to know kyuubi engine on kubernetes configurations, you can refer to Deploy Kyuubi engines on Kubernetes

Connect

If you do not use Service or HostNetwork to get the IP address of the node where Kyuubi deployed.
You should connect like:

kubectl exec -it kyuubi-example -- /bin/bash
${KYUUBI_HOME}/bin/beeline -u 'jdbc:hive2://localhost:10009'

Or you can submit tasks directly through local beeline:

${KYUUBI_HOME}/bin/beeline -u 'jdbc:hive2://${hostname}:${port}'

As using service nodePort, port means nodePort and hostname means any hostname of kubernetes node.

As using HostNetwork, port means kyuubi containerPort and hostname means hostname of node where Kyuubi deployed.

TODO

Kyuubi will provide other connection methods in the future, like Ingress, Load Balance.

 Integration with Hive Metastore

Integration with Hive Metastore

In this section, you will learn how to configure Kyuubi to interact with Hive Metastore.

	A common Hive metastore server could be set at Kyuubi server side

	Individual Hive metastore servers could be used for end users to set

Requirements

	A running Hive metastore server

	Hive Metastore Administration [https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration]

	Configuring the Hive Metastore for CDH [https://docs.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_metastore_configure.html]

	A Spark binary distribution built with -Phive support

	Use the built-in one in the Kyuubi distribution

	Download from Spark official website [https://spark.apache.org/downloads.html]

	Build from Spark source, Building With Hive and JDBC Support [https://spark.apache.org/docs/latest/building-spark.html#building-with-hive-and-jdbc-support]

	A copy of Hive client configuration

So the whole thing here is to let Spark applications use this copy of Hive configuration to start a Hive metastore client for their own to talk to the Hive metastore server.

Default Behavior

By default, Kyuubi launches Spark SQL engines pointing to a dummy embedded Apache Derby [https://db.apache.org/derby/]-based metastore for each application,
and this metadata can only be seen by one user at a time, e.g.

bin/beeline -u 'jdbc:hive2://localhost:10009/' -n kentyao
Connecting to jdbc:hive2://localhost:10009/
Connected to: Spark SQL (version 1.0.0-SNAPSHOT)
Driver: Hive JDBC (version 2.3.7)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 2.3.7 by Apache Hive
0: jdbc:hive2://localhost:10009/> show databases;
2020-11-16 23:50:50.388 INFO operation.ExecuteStatement:
 Spark application name: kyuubi_kentyao_spark_2020-11-16T15:50:08.968Z
 application ID: local-1605541809797
 application web UI: http://192.168.1.14:60165
 master: local[*]
 deploy mode: client
 version: 3.0.1
 Start time: 2020-11-16T15:50:09.123Z
 User: kentyao
2020-11-16 23:50:50.404 INFO metastore.HiveMetaStore: 2: get_databases: *
2020-11-16 23:50:50.404 INFO HiveMetaStore.audit: ugi=kentyao	ip=unknown-ip-addr	cmd=get_databases: *
2020-11-16 23:50:50.423 INFO operation.ExecuteStatement: Processing kentyao's query[8453e657-c1c4-4391-8406-ab4747a66c45]: RUNNING_STATE -> FINISHED_STATE, statement: show databases, time taken: 0.035 seconds
+------------+
| namespace |
+------------+
| default |
+------------+
1 row selected (0.122 seconds)
0: jdbc:hive2://localhost:10009/> show tables;
2020-11-16 23:50:52.957 INFO operation.ExecuteStatement:
 Spark application name: kyuubi_kentyao_spark_2020-11-16T15:50:08.968Z
 application ID: local-1605541809797
 application web UI: http://192.168.1.14:60165
 master: local[*]
 deploy mode: client
 version: 3.0.1
 Start time: 2020-11-16T15:50:09.123Z
 User: kentyao
2020-11-16 23:50:52.968 INFO metastore.HiveMetaStore: 2: get_database: default
2020-11-16 23:50:52.968 INFO HiveMetaStore.audit: ugi=kentyao	ip=unknown-ip-addr	cmd=get_database: default
2020-11-16 23:50:52.970 INFO metastore.HiveMetaStore: 2: get_database: default
2020-11-16 23:50:52.970 INFO HiveMetaStore.audit: ugi=kentyao	ip=unknown-ip-addr	cmd=get_database: default
2020-11-16 23:50:52.972 INFO metastore.HiveMetaStore: 2: get_tables: db=default pat=*
2020-11-16 23:50:52.972 INFO HiveMetaStore.audit: ugi=kentyao	ip=unknown-ip-addr	cmd=get_tables: db=default pat=*
2020-11-16 23:50:52.986 INFO operation.ExecuteStatement: Processing kentyao's query[ff902582-ba29-433b-b70a-c25ead1353a8]: RUNNING_STATE -> FINISHED_STATE, statement: show tables, time taken: 0.03 seconds
+-----------+------------+--------------+
| database | tableName | isTemporary |
+-----------+------------+--------------+
+-----------+------------+--------------+
No rows selected (0.04 seconds)

Using this mode for experimental purposes only.

In a real production environment, we always have a communal standalone metadata store,
to manage the metadata of persistent relational entities, e.g. databases, tables, columns, partitions, for fast access.
Usually, Hive metastore as the de facto.

Related Configurations

These are the basic needs for a Hive metastore client to communicate with the remote Hive Metastore server.

Use remote metastore database or server mode depends on the server-side configuration.

Remote Metastore Database

	Name
	Value
	Meaning

	javax.jdo.option.ConnectionURL
	jdbc:mysql://<hostname>/<databaseName>?createDatabaseIfNotExist=true

 Kyuubi High Availability Guide

Kyuubi High Availability Guide

As an enterprise-class ad-hoc SQL query service built on top of Apache Spark [https://spark.apache.org/], Kyuubi takes high availability (HA) as a major characteristic, aiming to ensure an agreed level of service availability, such as a higher than normal period of uptime.

Running Kyuubi in HA mode is to use groups of computers or containers that support SQL query service on Kyuubi that can be reliably utilized with a minimum amount of down-time. Kyuubi operates by using Apache ZooKeeper [https://zookeeper.apache.org/] to harness redundant service instances in groups that provide continuous service when one or more components fail.

Without HA, if a server crashes, Kyuubi will be unavailable until the crashed server is fixed. With HA, this situation will be remedied by hardware/software faults auto-detecting, and immediately another Kyuubi service instance will be ready to serve without requiring human intervention.

HA Architecture

Currently, Kyuubi supports load balancing to make the whole system highly available.

Load balancing aims to optimize all Kyuubi service unit’s usage, maximize throughput, minimize response time, and avoid overload of a single unit.
Using multiple Kyuubi service units with load balancing instead of a single unit may increase reliability and availability through redundancy.

Key Benefits

	High concurrency

	By adding or removing Kyuubi server instances can easily scale up or down to meet the need of client requests.

	Upgrade smoothly

	Kyuubi server supports stopping gracefully. We could delete a k.i. but not stop it immediately.
In this case, the k.i. will not take any new connection request but only operation requests from existing connections.
After all connection are released, it stops then.

	The dependencies of Kyuubi engines are free to change, such as bump up versions, modify configurations, add external jars, relocate to another engine home. Everything will be reloaded during start and stop.

System-side Deployment

When applying HA to Kyuubi deployment, we need to be aware of the below two thing basically,

	kyuubi.ha.zookeeper.quorum - the external zookeeper cluster address for deploy a k.i.

	kyuubi.ha.zookeeper.namespace - the root directory, a.k.a. the ServerSpace for deploy a k.i.

For more configurations, please see the HA section of Introduction to the Kyuubi Configurations System

Pseudo mode

When kyuubi.ha.zookeeper.quorum is not configured, a k.i. will start an embedded zookeeper service and expose the address of itself there.
In this pseduo mode, the k.i. can be connected by clients through both raw ip address and zk quorum + namespace.
But it doesn’t have any availability to being highly available.

Production mode

For production deployment purpose, an external zookeeper cluster is required for kyuubi.ha.zookeeper.quorum.
In this mode, multiple k.i.s can be registered to the same ServerSpace configured by kyuubi.ha.zookeeper.namespace and serve together.

Client-side Usage

With Kyuubi Hive JDBC Driver [https://mvnrepository.com/artifact/org.apache.kyuubi/kyuubi-hive-jdbc] or vanilla Hive JDBC Driver, a client can specify service discovery mode in JDBC connection string, i.e. serviceDiscoveryMode=zooKeeper; and set zooKeeperNamespace=kyuubi;, then it can randomly pick one of the Kyuubi service uris from the specified ZooKeeper addresses in the /kyuubi path.

For example,

bin/beeline -u 'jdbc:hive2://10.242.189.214:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=kyuubi' -n kentyao

How to Hot Upgrade Kyuubi Server

Kyuubi supports hot upgrade one of server in a HA cluster which is transparent to users.

	If you have specified a custom port for Kyuubi server

For example, the Kyuubi server started at host kyuubi.host with port 10009, you can run the following cmd using bin/kyuubi-ctl:

./bin/kyuubi-ctl delete server --host "kyuubi.host" --port "10009"

Kyuubi server will stop until all session closed, and then you can start a new Kyuubi server.

	If you use a random port for Kyuubi server

You can just start the new Kyuubi Server, and then run cmd using bin/kyuubi-ctl:

./bin/kyuubi-ctl delete server --host "kyuubi.host" --port "${PORT_FPR_OLD_KYUUBI_SERVER}"

The ${PORT_FPR_OLD_KYUUBI_SERVER} can be found by:

grep "server.KyuubiThriftBinaryFrontendService: Starting and exposing JDBC connection at" logs/kyuubi-*.out

Note that, you do not need to care when the old Kyuubi server actually stopped since the new coming session are routed to the new Kyuubi server and others.

 Kyuubi Migration Guide

Kyuubi Migration Guide

Upgrading from Kyuubi 1.7 to 1.8

	Since Kyuubi 1.8, SQLite is added and becomes the default database type of Kyuubi metastore, as Derby has been deprecated.
Both Derby and SQLite are mainly for testing purposes, and they’re not supposed to be used in production.
To restore previous behavior, set kyuubi.metadata.store.jdbc.database.type=DERBY and
kyuubi.metadata.store.jdbc.url=jdbc:derby:memory:kyuubi_state_store_db;create=true.

	Since Kyuubi 1.8, PROMETHEUS is changed as the default metrics reporter. To restore previous behavior,
set kyuubi.metrics.reporters=JSON.

Upgrading from Kyuubi 1.7.1 to 1.7.2

	Since Kyuubi 1.7.2, for Kyuubi BeeLine, please use --python-mode option to run python code or script.

Upgrading from Kyuubi 1.7.0 to 1.7.1

	Since Kyuubi 1.7.1, protocolVersion is removed from the request parameters of the REST API Open(create) a session. All removed or unknown parameters will be silently ignored and affects nothing.

	Since Kyuubi 1.7.1, confOverlay is supported in the request parameters of the REST API Create an operation with EXECUTE_STATEMENT type.

Upgrading from Kyuubi 1.6 to 1.7

	In Kyuubi 1.7, kyuubi.ha.zookeeper.engine.auth.type does not fallback to kyuubi.ha.zookeeper.auth.type.
When Kyuubi engine does Kerberos authentication with Zookeeper, user needs to explicitly set kyuubi.ha.zookeeper.engine.auth.type to KERBEROS.

	Since Kyuubi 1.7, Kyuubi returns engine’s information for GetInfo request instead of server. To restore the previous behavior, set kyuubi.server.info.provider to SERVER.

	Since Kyuubi 1.7, Kyuubi session type SQL is refactored to INTERACTIVE, because Kyuubi supports not only SQL session, but also SCALA and PYTHON sessions.
User need to use INTERACTIVE sessionType to look up the session event.

	Since Kyuubi 1.7, the REST API of Open(create) a session will not contain parameters user password and IpAddr. User and password should be set in Authorization of http request if needed.

Upgrading from Kyuubi 1.6.0 to 1.6.1

	Since Kyuubi 1.6.1, kyuubi.ha.zookeeper.engine.auth.type does not fallback to kyuubi.ha.zookeeper.auth.type.
When Kyuubi engine does Kerberos authentication with Zookeeper, user needs to explicitly set kyuubi.ha.zookeeper.engine.auth.type to KERBEROS.

Upgrading from Kyuubi 1.5 to 1.6

	Kyuubi engine gets Zookeeper principal & keytab from kyuubi.ha.zookeeper.auth.principal & kyuubi.ha.zookeeper.auth.keytab.
kyuubi.ha.zookeeper.auth.principal & kyuubi.ha.zookeeper.auth.keytab fallback to kyuubi.kinit.principal & kyuubi.kinit.keytab when not set.
Since Kyuubi 1.6, kyuubi.kinit.principal & kyuubi.kinit.keytab are filtered out from Kyuubi engine’s conf for better security.
When Kyuubi engine does Kerberos authentication with Zookeeper, user needs to explicitly set kyuubi.ha.zookeeper.auth.principal & kyuubi.ha.zookeeper.auth.keytab.

 Deploy Kyuubi engines on YARN

Deploy Kyuubi engines on YARN

Deploy Kyuubi Spark Engine on YARN

Requirements

To deploy Kyuubi’s Spark SQL engines on YARN, you’d better have cognition upon the following things.

	Knowing the basics about Running Spark on YARN [https://spark.apache.org/docs/latest/running-on-yarn.html]

	A binary distribution of Spark which is built with YARN support

	You can use the built-in Spark distribution

	You can get it from Spark official website [https://spark.apache.org/downloads.html] directly

	You can Build Spark [https://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version-and-enabling-yarn] with -Pyarn maven option

	An active Apache Hadoop YARN [https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html] cluster

	An active Apache Hadoop HDFS cluster

	Setup Hadoop client configurations at the machine the Kyuubi server locates

Configurations

Environment

Either HADOOP_CONF_DIR or YARN_CONF_DIR is configured and points to the Hadoop client configurations directory, usually, $HADOOP_HOME/etc/hadoop.

If the HADOOP_CONF_DIR points the YARN and HDFS cluster correctly, you should be able to run the SparkPi example on YARN.

$ HADOOP_CONF_DIR=/path/to/hadoop/conf $SPARK_HOME/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master yarn \
 --queue thequeue \
 $SPARK_HOME/examples/jars/spark-examples*.jar \
 10

If the SparkPi passes, configure it in $KYUUBI_HOME/conf/kyuubi-env.sh or $SPARK_HOME/conf/spark-env.sh, e.g.

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.sh

Spark Properties

These properties are defined by Spark and Kyuubi will pass them to spark-submit to create Spark applications.

Note: None of these would take effect if the application for a particular user already exists.

	Specify it in the JDBC connection URL, e.g. jdbc:hive2://localhost:10009/;#spark.master=yarn;spark.yarn.queue=thequeue

	Specify it in $KYUUBI_HOME/conf/kyuubi-defaults.conf

	Specify it in $SPARK_HOME/conf/spark-defaults.conf

Note: The priority goes down from top to bottom.

Master

Setting spark.master=yarn tells Kyuubi to submit Spark SQL engine applications to the YARN cluster manager.

Queue

Set spark.yarn.queue=thequeue in the JDBC connection string to tell Kyuubi to use the QUEUE in the YARN cluster, otherwise,
the QUEUE configured at Kyuubi server side will be used as default.

Sizing

Pass the configurations below through the JDBC connection string to set how many instances of Spark executor will be used
and how many cpus and memory will Spark driver, ApplicationMaster and each executor take.

	Name
	Default
	Meaning

	spark.executor.instances
	1
	The number of executors for static allocation

	spark.executor.cores
	1
	The number of cores to use on each executor

	spark.yarn.am.memory
	512m
	Amount of memory to use for the YARN Application Master in client mode

	spark.yarn.am.memoryOverhead
	amMemory * 0.10, with minimum of 384
	Amount of non-heap memory to be allocated per am process in client mode

	spark.driver.memory
	1g
	Amount of memory to use for the driver process

	spark.driver.memoryOverhead
	driverMemory * 0.10, with minimum of 384
	Amount of non-heap memory to be allocated per driver process in cluster mode

	spark.executor.memory
	1g
	Amount of memory to use for the executor process

	spark.executor.memoryOverhead
	executorMemory * 0.10, with minimum of 384
	Amount of additional memory to be allocated per executor process. This is memory that accounts for things like VM overheads, interned strings other native overheads, etc

It is recommended to use Dynamic Allocation [https://spark.apache.org/docs/3.0.1/configuration.html#dynamic-allocation] with Kyuubi,
since the SQL engine will be long-running for a period, execute user’s queries from clients periodically,
and the demand for computing resources is not the same for those queries.
It is better for Spark to release some executors when either the query is lightweight, or the SQL engine is being idled.

Tuning

You can specify spark.yarn.archive or spark.yarn.jars to point to a world-readable location that contains Spark jars on HDFS,
which allows YARN to cache it on nodes so that it doesn’t need to be distributed each time an application runs.

Others

Please refer to Spark properties [https://spark.apache.org/docs/latest/running-on-yarn.html#spark-properties] to check other acceptable configs.

Kerberos

Kyuubi currently does not support Spark’s YARN-specific Kerberos Configuration [https://spark.apache.org/docs/3.0.1/running-on-yarn.html#kerberos],
so spark.kerberos.keytab and spark.kerberos.principal should not use now.

Instead, you can schedule a periodically kinit process via crontab task on the local machine that hosts Kyuubi server or simply use Kyuubi Kinit.

Deploy Kyuubi Flink Engine on YARN

Requirements

To deploy Kyuubi’s Flink SQL engines on YARN, you’d better have cognition upon the following things.

	Knowing the basics about Running Flink on YARN [https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/resource-providers/yarn]

	A binary distribution of Flink which is built with YARN support

	Download a recent Flink distribution from the Flink official website [https://flink.apache.org/downloads.html] and unpack it

	An active Apache Hadoop YARN [https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html] cluster

	Make sure your YARN cluster is ready for accepting Flink applications by running yarn top. It should show no error messages

	An active Object Storage cluster, e.g. HDFS [https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html], S3 and Minio [https://min.io/] etc.

	Setup Hadoop client configurations at the machine the Kyuubi server locates

Flink Deployment Modes

Currently, Flink supports two deployment modes on YARN: YARN Application Mode [https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/resource-providers/yarn/#application-mode] and YARN Session Mode [https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/resource-providers/yarn/#application-mode].

	YARN Application Mode: In this mode, Kyuubi starts a dedicated Flink application cluster and runs the SQL engine on it.

	YARN Session Mode: In this mode, Kyuubi starts the Flink SQL engine locally and connects to a running Flink YARN session cluster.

As Kyuubi has to know the deployment mode before starting the SQL engine, it’s required to specify the deployment mode in Kyuubi configuration.

candidates: yarn-application, yarn-session
flink.execution.target=yarn-application

YARN Application Mode

Flink Configurations

Since the Flink SQL engine runs inside the JobManager, it’s recommended to tune the resource configurations of the JobManager based on your workload.

The related Flink configurations are listed below (see more details at Flink Configuration [https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/#yarn]):

	Name
	Default
	Meaning

	yarn.appmaster.vcores
	1
	The number of virtual cores (vcores) used by the JobManager (YARN application master).

	jobmanager.memory.process.size
	(none)
	Total size of the memory of the JobManager process.

Environment

Either `HADOOP_CONF_DIR` or `YARN_CONF_DIR` is configured and points to the Hadoop client configurations directory, usually, `$HADOOP_HOME/etc/hadoop`.

You could verify your setup by the following command:

```bash
# we assume to be in the root directory of 
# the unzipped Flink distribution

# (0) export HADOOP_CLASSPATH
export HADOOP_CLASSPATH=`hadoop classpath`

# (1) submit a Flink job and ensure it runs successfully
./bin/flink run -m yarn-cluster ./examples/streaming/WordCount.jar








YARN Session Mode


Flink Configurations

execution.target: yarn-session
# YARN Session Cluster application id.
yarn.application.id: application_00000000XX_00XX







Environment

Either HADOOP_CONF_DIR or YARN_CONF_DIR is configured and points to the Hadoop client configurations directory, usually, $HADOOP_HOME/etc/hadoop.

If the HADOOP_CONF_DIR points to the YARN and HDFS cluster correctly, and the HADOOP_CLASSPATH environment variable is set, you can launch a Flink on YARN session, and submit an example job:

# we assume to be in the root directory of 
# the unzipped Flink distribution

# (0) export HADOOP_CLASSPATH
export HADOOP_CLASSPATH=`hadoop classpath`

# (1) Start YARN Session
./bin/yarn-session.sh --detached

# (2) You can now access the Flink Web Interface through the
# URL printed in the last lines of the command output, or through
# the YARN ResourceManager web UI.

# (3) Submit example job
./bin/flink run ./examples/streaming/TopSpeedWindowing.jar

# (4) Stop YARN session (replace the application id based 
# on the output of the yarn-session.sh command)
echo "stop" | ./bin/yarn-session.sh -id application_XXXXX_XXX





If the TopSpeedWindowing passes, configure it in $KYUUBI_HOME/conf/kyuubi-env.sh

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.sh







Required Environment Variable

The FLINK_HADOOP_CLASSPATH is required, too.

For users who are using Hadoop 3.x, Hadoop shaded client is recommended instead of Hadoop vanilla jars.
For users who are using Hadoop 2.x, FLINK_HADOOP_CLASSPATH should be set to hadoop classpath to use Hadoop
vanilla jars. For users which does not use Hadoop services, e.g. HDFS, YARN at all, Hadoop client jars
is also required, and recommend to use Hadoop shaded client as Hadoop 3.x’s users do.

See HADOOP-11656 [https://issues.apache.org/jira/browse/HADOOP-11656] for details of Hadoop shaded client.

To use Hadoop shaded client, please configure $KYUUBI_HOME/conf/kyuubi-env.sh as follows:

$ echo "export FLINK_HADOOP_CLASSPATH=/path/to/hadoop-client-runtime-3.3.2.jar:/path/to/hadoop-client-api-3.3.2.jar" >> $KYUUBI_HOME/conf/kyuubi-env.sh





To use Hadoop vanilla jars, please configure $KYUUBI_HOME/conf/kyuubi-env.sh as follows:

$ echo "export FLINK_HADOOP_CLASSPATH=`hadoop classpath`" >> $KYUUBI_HOME/conf/kyuubi-env.sh








Kerberos

With regard to YARN application mode, Kerberos is supported natively by Flink, see Flink Kerberos Configuration [https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/config/#security-kerberos-login-keytab] for details.

With regard to YARN session mode, security.kerberos.login.keytab and security.kerberos.login.principal are not effective, as Kyuubi Flink SQL engine mainly relies on Flink SQL client which currently does not support Flink Kerberos Configuration [https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/config/#security-kerberos-login-keytab],

As a workaround, you can schedule a periodically kinit process via crontab task on the local machine that hosts Kyuubi server or simply use Kyuubi Kinit.




Deploy Kyuubi Hive Engine on YARN


Requirements

To deploy Kyuubi’s Hive SQL engines on YARN, you’d better have cognition upon the following things.


	Knowing the basics about Running Hive on YARN [https://cwiki.apache.org/confluence/display/Hive/GettingStarted]


	A binary distribution of Hive


	You can use the built-in Hive distribution


	Download a recent Hive distribution from the Hive official website [https://hive.apache.org/downloads.html] and unpack it


	You can Build Hive [https://cwiki.apache.org/confluence/display/Hive//GettingStarted#GettingStarted-BuildingHivefromSource]






	An active Apache Hadoop YARN [https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html] cluster


	Make sure your YARN cluster is ready for accepting Hive applications by running yarn top. It should show no error messages






	An active Apache Hadoop HDFS [https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html] cluster


	Setup Hadoop client configurations at the machine the Kyuubi server locates


	An active Hive Metastore Service [https://cwiki.apache.org/confluence/display/hive/design#Design-Metastore]






Configurations


Environment

Either HADOOP_CONF_DIR or YARN_CONF_DIR is configured and points to the Hadoop client configurations directory, usually, $HADOOP_HOME/etc/hadoop.

If the HADOOP_CONF_DIR points to the YARN and HDFS cluster correctly, you should be able to run the Hive SQL example on YARN.

$ $HIVE_HOME/bin/hiveserver2
# In another terminal
$ $HIVE_HOME/bin/beeline -u 'jdbc:hive2://localhost:10000/default'
0: jdbc:hive2://localhost:10000/default> CREATE TABLE pokes (foo INT, bar STRING);
0: jdbc:hive2://localhost:10000/default> INSERT INTO TABLE pokes VALUES (1, 'hello');





If the Hive SQL passes and there is a job in YARN Web UI, it indicates the hive environment is good.



Required Environment Variable

The HIVE_HADOOP_CLASSPATH is required, too. It should contain commons-collections-*.jar,
hadoop-client-runtime-*.jar, hadoop-client-api-*.jar and htrace-core4-*.jar.
All four jars are in the HADOOP_HOME.

For example, in Hadoop 3.1.0 version, the following is their location.


	${HADOOP_HOME}/share/hadoop/common/lib/commons-collections-3.2.2.jar


	${HADOOP_HOME}/share/hadoop/client/hadoop-client-runtime-3.1.0.jar


	${HADOOP_HOME}/share/hadoop/client/hadoop-client-api-3.1.0.jar


	${HADOOP_HOME}/share/hadoop/common/lib/htrace-core4-4.1.0-incubating.jar




Configure them in $KYUUBI_HOME/conf/kyuubi-env.sh or $HIVE_HOME/conf/hive-env.sh, e.g.

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.sh
$ echo "export HIVE_HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/common/lib/commons-collections-3.2.2.jar:${HADOOP_HOME}/share/hadoop/client/hadoop-client-runtime-3.1.0.jar:${HADOOP_HOME}/share/hadoop/client/hadoop-client-api-3.1.0.jar:${HADOOP_HOME}/share/hadoop/common/lib/htrace-core4-4.1.0-incubating.jar" >> $KYUUBI_HOME/conf/kyuubi-env.sh











            

          

      

      

    

  

  
    
    

    Deploy Kyuubi engines on Kubernetes
    

    

    

    

    
 
  

    
      
          
            
  
Deploy Kyuubi engines on Kubernetes


Requirements

When you want to run Kyuubi’s Spark SQL engines on Kubernetes, you’d better have cognition upon the following things.


	Read about Running Spark On Kubernetes [https://spark.apache.org/docs/latest/running-on-kubernetes.html]


	An active Kubernetes cluster


	Kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]


	KubeConfig of the target cluster






Configurations


Master

Spark on Kubernetes config master by using a special format.

spark.master=k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>

You can use cmd kubectl cluster-info to get api-server host and port.



Deploy Mode

One of the main advantages of the Kyuubi server compared to other interactive Spark clients is that it supports cluster deploy mode.
It is highly recommended to run Spark in k8s in cluster mode.

The minimum required configurations are:


	spark.submit.deployMode (cluster)


	spark.kubernetes.file.upload.path (path on s3 or hdfs)


	spark.kubernetes.authenticate.driver.serviceAccountName (viz ServiceAccount)






Docker Image

Spark ships a ./bin/docker-image-tool.sh script to build and publish the Docker images for running Spark applications on Kubernetes.

When deploying Kyuubi engines against a Kubernetes cluster, we need to set up the docker images in the Docker registry first.

Example usage is:

./bin/docker-image-tool.sh -r <repo> -t my-tag build
./bin/docker-image-tool.sh -r <repo> -t my-tag push
# To build docker image with specify openJdk 
./bin/docker-image-tool.sh -r <repo> -t my-tag -b java_image_tag=<openjdk:${java_image_tag}> build
# To build additional PySpark docker image
./bin/docker-image-tool.sh -r <repo> -t my-tag -p ./kubernetes/dockerfiles/spark/bindings/python/Dockerfile build
# To build additional SparkR docker image
./bin/docker-image-tool.sh -r <repo> -t my-tag -R ./kubernetes/dockerfiles/spark/bindings/R/Dockerfile build







Test Cluster

You can use the shell code to test your cluster whether it is normal or not.

$SPARK_HOME/bin/spark-submit \
 --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
 --class org.apache.spark.examples.SparkPi \
 --conf spark.executor.instances=5 \
 --conf spark.dynamicAllocation.enabled=false \
 --conf spark.shuffle.service.enabled=false \
 --conf spark.kubernetes.container.image=<spark-image> \
 local://<path_to_examples.jar>





When running shell, you can use cmd kubectl describe pod <podName> to check if the information meets expectations.



ServiceAccount

When use Client mode to submit application, spark driver use the kubeconfig to access api-service to create and watch executor pods.

When use Cluster mode to submit application, spark driver pod use serviceAccount to access api-service to create and watch executor pods.

In both cases, you need to figure out whether you have the permissions under the corresponding namespace. You can use following cmd to create serviceAccount (You need to have the kubeconfig which have the create serviceAccount permission).

# create serviceAccount
kubectl create serviceaccount spark -n <namespace>
# binding role
kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=<namespace>:spark --namespace=<namespace>







Volumes

As it known to us all, Kubernetes can use configurations to mount volumes into driver and executor pods.


	hostPath: mounts a file or directory from the host node’s filesystem into a pod.


	emptyDir: an initially empty volume created when a pod is assigned to a node.


	nfs: mounts an existing NFS(Network File System) into a pod.


	persistentVolumeClaim: mounts a PersistentVolume into a pod.




Note: Please
see the Security section of this document [https://spark.apache.org/docs/latest/running-on-kubernetes.html#security] for security issues related to volume mounts.

spark.kubernetes.driver.volumes.<type>.<name>.options.path=<dist_path>
spark.kubernetes.driver.volumes.<type>.<name>.mount.path=<container_path>

spark.kubernetes.executor.volumes.<type>.<name>.options.path=<dist_path>
spark.kubernetes.executor.volumes.<type>.<name>.mount.path=<container_path>





Read Using Kubernetes Volumes [https://spark.apache.org/docs/latest/running-on-kubernetes.html#using-kubernetes-volumes] for more about volumes.



PodTemplateFile

Kubernetes allows defining pods from template files. Spark users can similarly use template files to define the driver or executor pod configurations that Spark configurations do not support.

To do so, specify the spark properties spark.kubernetes.driver.podTemplateFile and spark.kubernetes.executor.podTemplateFile to point to local files accessible to the spark-submit process.



Other

You can read Spark’s official documentation for Running on Kubernetes [https://spark.apache.org/docs/latest/running-on-kubernetes.html] for more information.






            

          

      

      

    

  

  
    
    

    The Share Level Of Kyuubi Engines
    

    

    

    

    
 
  

    
      
          
            
  
The Share Level Of Kyuubi Engines

The share level of Kyuubi engines describes the relationship between sessions and engines.
It determines whether a new session can share an existing backend engine with other sessions or not.
The sessions are also known as JDBC/ODBC/Thrift connections from clients that end-users create, and the engines are standalone applications with the full capabilities of Spark SQL, Flink SQL(under dev), running on single-node machines or clusters.

The share level of Kyuubi engines works the same whether in HA or single node mode.
In other words, an engine is cluster widely shared by all Kyuubi server peers if could.


Why do we need this feature?

Apache Spark is a unified engine for large-scale data analytics.
Using Spark to process data is like driving an all-wheel-drive hefty horsepower supercar.
However,


	Cars have their limit of 0-60 times.
In a similar way, all Spark applications also have to warm up before go full speed.


	Cars have a constant number of seats and are not allowed to be overloaded.
Due to the master-slave architecture of Spark and the resource configured ahead, the overall workload of a single application is predictable.


	Cars have various shapes to meet our needs.




With this feature, Kyuubi give you a more flexible way to handle different big data workloads.



The current supported share levels

The current supported share levels are,




	Share Level
	Syntax
	Scenario
	Isolation Degree
	Shareability





	CONNECTION
	One engine per session
	Large-scale ETL 
  
    
    

    The TTL Of Kyuubi Engines
    

    

    

    

    
 
  

    
      
          
            
  
The TTL Of Kyuubi Engines

For a multi-tenant cluster, its overall resource utilization is a KPI that measures how effectively its resource is utilized against its availability or capacity.
To better improve the overall resource utilization of the cluster,


	At cluster layer, we leverage the capabilities, such as Capacity Scheduler [https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html], of resource scheduling management services, such as YARN and K8s.


	At application layer, we’d be better to acquire and release resources according to the real workloads.





The Big Contributors Of Resource Waste


	The time to wait for the resource to be allocated, such as the scheduling delay, the start/stop cost.


	A longer time-to-live(TTL) for allocated resources can significantly reduce such time costs within an application.






	The time being idle of the resource.


	A shorter time to live for allocated resources can make all resources in rapid turnarounds across applications.










TTL Types In Kyuubi Engines






	Engine TTL


	The TTL of engines describes how long an engine will be cached after all sessions are disconnected.






	Executor TTL


	The TTL of the executor describes how long an executor will be cached when no tasks come.










Configurations


Engine TTL




	Key
	Default
	Meaning
	Type
	Since





	kyuubi.session.engine.check.interval
  
    
    

    The Spark SQL Engine Configuration Guide
    

    

    

    

    
 
  

    
      
          
            
  
The Spark SQL Engine Configuration Guide

Kyuubi aims to bring Spark to end-users who need not qualify with Spark or something else related to the big data area.
End-users can write SQL queries through JDBC against Kyuubi and nothing more.
The Kyuubi server-side or the corresponding engines could do most of the optimization.
On the other hand, we don’t wholly restrict end-users to special handling of specific cases to benefit from the following documentations.
Even if you don’t use Kyuubi, as a simple Spark user, I’m sure you’ll find the next articles instructive.



	How To Use Spark Dynamic Resource Allocation (DRA) in Kyuubi
	The Basics of Dynamic Resource Allocation

	How to Enable Dynamic Resource Allocation

	Sizing for engines w/ Dynamic Resource Allocation

	Resource Allocation Policy

	Best Practices for Applying DRA to Kyuubi

	References





	How To Use Spark Adaptive Query Execution (AQE) in Kyuubi
	The Basics of AQE

	Best Practices for Applying AQE to Kyuubi

	Spark Known issues

	References





	Solution for Big Result Sets
	Incremental collection

	Use in single connections

	Change incremental collection mode in session












            

          

      

      

    

  

  
    
    

    How To Use Spark Dynamic Resource Allocation (DRA) in Kyuubi
    

    

    

    

    
 
  

    
      
          
            
  
How To Use Spark Dynamic Resource Allocation (DRA) in Kyuubi

When we adopt Kyuubi in a production environment,
we always want to use the environment’s computing resources more cost-effectively and efficiently.
Cluster managers such as  K8S and Yarn manage the cluster compute resources,
divided into different queues or namespaces with different ACLs and quotas.

In Kyuubi, we acquire computing resources from the cluster manager to submit the engines.
The engines respond to various types of client requests,
some of which consume many computing resources to process,
while others may require very few resources to complete.
If we have fixed-sized engines,
a.k.a. with a fixed number for spark.executor.instances,
it may cause a waste of resources for some lightweight workloads,
while for some heavyweight workloads,
it should probably not have enough concurrency capacity resulting in poor performance.

When the engine has executor idled,
we should release it back to the resource pool promptly,
and conversely, when the engine is doing chubby tasks,
we should be able to get and use more resources more efficiently.
On the one hand, we need to rely on the resource manager’s capabilities for efficient resource allocation,
resource isolation, and sharing.
On the other hand, we need to enable Spark’s DRA feature for the engines’ executors’ elastic scaling.


The Basics of Dynamic Resource Allocation

Spark provides a mechanism to dynamically adjust the application resources based on the workload, which means that an application may give resources back to the cluster if they are no longer used and request them again later when there is demand.
This feature is handy if multiple applications share resources on YARN, Kubernetes, and other platforms.

For Kyuubi engines,
which are typical Spark applications,
the dynamic allocation allows Spark to dynamically scale the cluster resources allocated to them based on the workloads.
When dynamic allocation is enabled,
and an engine has a backlog of pending tasks,
it can request executors via ExecutorAllocationManager.
When the engine has executors that become idle, the executors are released,
and the occupied resources are given back to the cluster manager.
Then other engines or other applications run in the same queue could acquire the resources.



How to Enable Dynamic Resource Allocation

The prerequisite for enabling this feature is for downstream stages to have proper access to shuffle data, even if the executors that generated the data are recycled.

Spark provides two implementations for shuffle data tracking. If either is enabled, we can use the  DRA feature properly.


Dynamic Resource Allocation w/ External Shuffle Service

Having an external shuffle service (ESS) makes sure that all the data is stored outside of executors.
This prerequisite was needed as Spark needed to ensure that the executors’ removal does not remove shuffle data.
When deploying Kyuubi with a cluster manager that provides ESS, enable DRA for all the engines with the configurations below.

spark.dynamicAllocation.enabled=true
spark.shuffle.service.enabled=true





Another thing to be sure of is that spark.shuffle.service.port should be configured to point to the port on which the ESS is running.



Dynamic Allocation w/o External Shuffle Service

Implementations of the ESS feature are cluster manager dependent. Yarn, for instance, where the ESS needs to be deployed cluster-widely and is actually running in the Yarn’s NodeManager component. Nevertheless, if run Kyuubi’s engines on Kubernetes, the ESS is not an option yet.
Since Spark 3.0, the DRA can run without ESS. The relative feature called Shuffle Tracking was introduced by SPARK-27963 [https://issues.apache.org/jira/browse/SPARK-27963].

When deploying Kyuubi with a cluster manager that without ESS or the ESS is not attractive, enable DRA with Shuffle Tracking instead for all the engines with the configurations below.

spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.shuffleTracking.enabled=true





When Shuffle Tracking is enabled, spark.dynamicAllocation.shuffleTracking.timeout(default: infinity) controls the timeout for executors that are holding shuffle data. Spark will rely on the shuffles being garbage collected to be able to release executors by default. When the garbage collection is not cleaning up shuffles quickly enough, this timeout forces Spark to delete executors even when they are storing shuffle data.




Sizing for engines w/ Dynamic Resource Allocation

Resources for a single executor, such as CPUs and memory, can be fixed size. So, the range [minExecutors, maxExecutors] determines how many recourses the engine can take from the cluster manager.

On the one hand, the  minExecutors tells Spark to keep how many executors at least. If it is set too close to 0(default), the engine might complain about a lack of resources if the cluster manager is quite busy and for a long time.
However, the larger the minExecutors goes, the more resources may be wasted during the engine’s idle time.

On the other hand, the maxExecutors determines the upper bound executors of an engine could reach. From the individual engine perspective, this value is the larger, the better, to handle heavier queries. However, we must limit it to a reasonable range in terms of the entire cluster’s resources. Otherwise, a large query may trigger the engine where it runs to consume too many resources from the queue/namespace and occupy them for a considerable time, which could be a bad idea for using the resources efficiently. In this case, we would prefer that such an enormous task be done more slowly in a limited amount of concurrency.

The following Spark configurations consist of sizing for the DRA.

spark.dynamicAllocation.minExecutors=10
spark.dynamicAllocation.maxExecutors=500





Additionally, another config called spark.dynamicAllocation.initialExecutors can be used to decide how many executors to request during engine bootstrapping or failover.

Ideally,   the size relationship between them should be as minExecutors <= initialExecutors < maxExecutors.



Resource Allocation Policy

When the DRA notices that the current resources are insufficient for the current workload, it will request more executors.


  
    
    

    How To Use Spark Adaptive Query Execution (AQE) in Kyuubi
    

    

    

    

    
 
  

    
      
          
            
  
How To Use Spark Adaptive Query Execution (AQE) in Kyuubi


The Basics of AQE

Spark Adaptive Query Execution (AQE) is a query re-optimization that occurs during query execution.

In terms of technical architecture, the AQE is a framework of dynamic planning and replanning of queries based on runtime statistics,
which supports a variety of optimizations such as,


	Dynamically Switch Join Strategies


	Dynamically Coalesce Shuffle Partitions


	Dynamically Handle Skew Joins




In Kyuubi, we strongly recommended that you turn on all capabilities of AQE by default for Kyuubi engines, no matter on what platform you run Kyuubi and Spark.


Dynamically Switch Join Strategies

Spark supports several join strategies, among which BroadcastHash Join is usually the most performant when any join side fits well in memory. And for this reason, Spark plans a BroadcastHash Join if the estimated size of a join relation is less than the spark.sql.autoBroadcastJoinThreshold.

spark.sql.autoBroadcastJoinThreshold=10M





Without AQE, the estimated size of join relations comes from the statistics of the original table. It can go wrong in most real-world cases. For example, the join relation is a convergent but composite operation rather than a single table scan. In this case, Spark might not be able to switch the join-strategy to BroadcastHash Join.  While with AQE, we can runtime calculate the size of the composite operation accurately.  And then, Spark now can replan the join strategy unmistakably if the size fits spark.sql.autoBroadcastJoinThreshold


  
    
    

    Solution for Big Result Sets
    

    

    

    

    
 
  

    
      
          
            
  
Solution for Big Result Sets

Typically, when a user submits a SELECT query to Spark SQL engine, the Driver calls collect to trigger calculation and
collect the entire data set of all tasks(a.k.a. partitions of an RDD), after all partitions data arrived, then the
client pulls the result set from the Driver through the Kyuubi Server in small batch.

Therefore, the bottleneck is the Spark Driver for a query with a big result set. To avoid OOM, Spark has a configuration
spark.driver.maxResultSize which default is 1g, you should enlarge it as well as spark.driver.memory if your
query has result set in several GB. But what if the result set size is dozens GB or event hundreds GB? It would be best
if you have incremental collection mode.


Incremental collection

Since v1.4.0-incubating, Kyuubi supports incremental collection mode, it is a solution for big result sets. This feature
is disabled in default, you can turn on it by setting the configuration kyuubi.operation.incremental.collect to true.

The incremental collection changes the gather method from collect to toLocalIterator. toLocalIterator is a Spark
action that sequentially submits Jobs to retrieve partitions. As each partition is retrieved, the client through pulls
the result set from the Driver through the Kyuubi Server streamingly. It reduces the Driver memory significantly from
the size of the complete result set to the maximum partition.

The incremental collection is not the silver bullet, you should turn it on carefully, because it can significantly hurt
performance. And even in incremental collection mode, when multiple queries execute concurrently, each query still requires
one partition of data in Driver memory. Therefore, it is still important to control the number of concurrent queries to
avoid OOM.



Use in single connections

As above explains, the incremental collection mode is not suitable for common query sense, you can enable incremental
collection mode for specific queries by using

beeline -u 'jdbc:hive2://kyuubi:10009/?spark.driver.maxResultSize=8g;spark.driver.memory=12g#kyuubi.engine.share.level=CONNECTION;kyuubi.operation.incremental.collect=true' \
    --incremental=true \
    -f big_result_query.sql





--incremental=true is required for beeline client, otherwise, the entire result sets is fetched and buffered before
being displayed, which may cause client side OOM.



Change incremental collection mode in session

The configuration kyuubi.operation.incremental.collect can also be changed using SET in session.

~ beeline -u 'jdbc:hive2://localhost:10009'
Connected to: Apache Kyuubi (Incubating) (version 1.5.0-SNAPSHOT)

0: jdbc:hive2://localhost:10009/> set kyuubi.operation.incremental.collect=true;
+---------------------------------------+--------+
|                  key                  | value  |
+---------------------------------------+--------+
| kyuubi.operation.incremental.collect  | true   |
+---------------------------------------+--------+
1 row selected (0.039 seconds)

0: jdbc:hive2://localhost:10009/> select /*+ REPARTITION(5) */ * from range(1, 10);
+-----+
| id  |
+-----+
| 2   |
| 6   |
| 7   |
| 0   |
| 5   |
| 3   |
| 4   |
| 1   |
| 8   |
| 9   |
+-----+
10 rows selected (1.929 seconds)

0: jdbc:hive2://localhost:10009/> set kyuubi.operation.incremental.collect=false;
+---------------------------------------+--------+
|                  key                  | value  |
+---------------------------------------+--------+
| kyuubi.operation.incremental.collect  | false   |
+---------------------------------------+--------+
1 row selected (0.027 seconds)

0: jdbc:hive2://localhost:10009/> select /*+ REPARTITION(5) */ * from range(1, 10);
+-----+
| id  |
+-----+
| 2   |
| 6   |
| 7   |
| 0   |
| 5   |
| 3   |
| 4   |
| 1   |
| 8   |
| 9   |
+-----+
10 rows selected (0.128 seconds)





From the Spark UI, we can see that in incremental collection mode, the query produces 5 jobs (in red square), and in
normal mode, only produces 1 job (in blue square).

[image: ../../_images/incremental_collection.png]





            

          

      

      

    

  

  
    
    

    Kyuubi Security Overview
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Security Overview

Securing Kyuubi involves enabling authentication(authn), authorization(authz) and encryption, etc.



	Authentication
	Configure Kyuubi to use Kerberos Authentication

	Configure Kerberos for clients to Access Kerberized Kyuubi

	Configure Kyuubi to use LDAP Authentication

	Configure Kyuubi to Use JDBC Authentication

	Configure Kyuubi to use Custom Authentication





	Authorization
	Spark AuthZ Plugin





	Kinit Auxiliary Service
	Installing and Configuring the Kerberos Clients

	Kerberos Ticket

	Configurations

	Further Readings





	Hadoop Credentials Manager
	Configurations












            

          

      

      

    

  

  
    
    

    Kyuubi Authentication Mechanism
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Authentication Mechanism

In a secure cluster, services should be able to identify and authenticate
callers. As the fact that the user claims does not necessarily mean this
is true.

The authentication process of kyuubi is used to verify the user identity
that a client used to talk to the kyuubi server. Once done, a trusted
connection will be set up between the client and server if successful;
otherwise, rejected.


Note

This only authenticate whether a user or client can connect
with Kyuubi server or not using the provided identity.
For other secured services that this user wants to interact with, he/she
also needs to pass the authentication process of each service, for instance,
Hive Metastore, YARN, HDFS.



The related configurations can be found at Authentication Configurations



	Configure Kyuubi to use Kerberos Authentication
	Kerberos Overview

	Enable Kerberos Authentication





	Configure Kerberos for clients to Access Kerberized Kyuubi
	Instructions

	Install Kerberos Client

	Configure Kerberos Client

	Get Kerberos TGT

	Add Kerberos Client Configuration File to JVM Search Path

	Add Kerberos Ticket Cache to JVM Search Path

	Ensure core-site.xml Exists in Classpath

	Connect with JDBC URL





	Configure Kyuubi to use LDAP Authentication
	Enable LDAP Authentication

	User and Group Filter in LDAP





	Configure Kyuubi to Use JDBC Authentication
	Enable JDBC Authentication

	Configure the authentication properties

	Authentication with In-memory Database





	Configure Kyuubi to use Custom Authentication
	Build A Custom Authenticator

	Enable Custom Authentication












            

          

      

      

    

  

  
    
    

    Configure Kyuubi to use Kerberos Authentication
    

    

    

    

    
 
  

    
      
          
            
  
Configure Kyuubi to use Kerberos Authentication

If you are deploying Kyuubi with a kerberized Hadoop cluster, it is strongly
recommended that kyuubi.authentication should be set to KERBEROS too.


Kerberos Overview

Kerberos is a network authentication protocol that provides the tools of
authentication and strong cryptography over the network.
The Kerberos protocol uses strong cryptography so that a client or a server
can prove its identity to its server or client across an insecure network connection.
After a client and server have used Kerberos to prove their identity, they can
also encrypt all of their communications to assure privacy and data integrity as
they go about their business.

The Kerberos architecture is centered around a trusted authentication service
called the key distribution center, or KDC.
Users and services in a Kerberos environment are referred to as principals;
each principal shares a secret, such as a password, with the KDC.



Enable Kerberos Authentication

To enable the Kerberos authentication method, we need to


Create a Kerberos principal and keytab

You can use the following commands in a Linux-based Kerberos environment to set up
the identity and update the keytab file:

The kyuubi.keytab file must be owned and readable by the Linux login user.

# kadmin
  : addprinc -randkey superuser/FQDN@REALM
  : ktadd -k ./kyuubi.keytab superuser/FQDN@REALM






Note

A widespread use case of kyuubi is to replace HiveServer2/Hive QL with
Kyuubi/Spark SQL. If an existing HiveServer2 environment is already there,
copying the environment and reusing the keytab and principal of HiveServer2 is
a convenient way.





Enable Hadoop Impersonation [https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Superusers.html]

If background cluster is also an kerberized Hadoop cluster, we need to enable the
impersonation capability of the superuser we use to start kyuubi server.

You can configure proxy user using properties hadoop.proxyuser.$superuser.hosts
along with either or both of hadoop.proxyuser.$superuser.groups and hadoop.proxyuser.$superuser.users.

For instance, by specifying as below in core-site.xml, the superuser named admin can connect
only from host1 and host2 to impersonate a user belonging to group1 and group2.

<property>
  <name>hadoop.proxyuser.admin.hosts</name>
  <value>host1,host2</value>
</property>
<property>
  <name>hadoop.proxyuser.admin.groups</name>
  <value>group1,group2</value>
</property>





Here,


	admin is the principal(short name) used to start kyuubi servers


	host1 and host2 are node addresses of kyuubi servers


	group1 and group2 are groups of client users





Note

These configurations need to be configured in the Hadoop cluster
and refreshed to take effect.




Note

If you are using the keytab of existing HiveServer2, this step can
also be omitted





Configure the authentication properties

Configure the following properties to $KYUUBI_HOME/conf/kyuubi-defaults.conf
on each node where kyuubi server is installed.

kyuubi.authentication=KERBEROS
kyuubi.kinit.principal=superuser/FQDN@REALM
kyuubi.kinit.keytab=/path/to/kyuubi.keytab





These configurations also need to be set to enable KERBEROS authentication.



Refresh all the kyuubi server instances

Restart all the kyuubi server instances or Refresh Configurations to activate the settings.






            

          

      

      

    

  

  
    
    

    Configure Kerberos for clients to Access Kerberized Kyuubi
    

    

    

    

    
 
  

    
      
          
            
  
Configure Kerberos for clients to Access Kerberized Kyuubi


Instructions

When Kyuubi is secured by Kerberos, the authentication procedure becomes a little complicated.

[image: ../../_images/kyuubi_kerberos_authentication.png]

The graph above shows a simplified kerberos authentication procedure:


	Kerberos client sends user principal and secret key to KDC. Secret key can be a password or a keytab file.


	KDC returns a ticket-granting ticket(TGT).


	Kerberos client stores TGT into a ticket cache.


	JDBC client, such as beeline and BI tools, reads TGT from the ticket cache.


	JDBC client sends TGT and server principal to KDC.


	KDC returns a client-to-server ticket.


	JDBC client sends client-to-server ticket to Kyuubi server to prove its identity.




In the rest part of this page, we will describe steps needed to pass through this authentication.



Install Kerberos Client

Usually, Kerberos client is installed as default. You can validate it using klist tool.

Linux command and output:

$ klist -V
Kerberos 5 version 1.15.1





MacOS command and output:

$ klist --version
klist (Heimdal 1.5.1apple1)
Copyright 1995-2011 Kungliga Tekniska Högskolan
Send bug-reports to heimdal-bugs@h5l.org





Windows command and output:

> klist -V
Kerberos for Windows





If the client is not installed, you should install it ahead based on the OS platform.
We recommend you to install the MIT Kerberos Distribution as all commands in this guide is based on it.



Configure Kerberos Client

Kerberos client needs a configuration file for tuning up the creation of Kerberos ticket cache.
Following is the configuration file’s default location on different OS:




	OS
	Path





	Linux
	/etc/krb5.conf



	MacOS
	/etc/krb5.conf



	Windows
	%ProgramData%\MIT\Kerberos5\krb5.ini




You can use KRB5_CONFIG environment variable to overwrite the default location.

The configuration file should be configured to point to the same KDC as Kyuubi points to.



Get Kerberos TGT

Execute kinit command to get TGT from KDC.

Suppose user principal is kyuubi_user@KYUUBI.APACHE.ORG and user keytab file name is kyuubi_user.keytab,
the command should be:

$ kinit -kt kyuubi_user.keytab kyuubi_user@KYUUBI.APACHE.ORG

(Command is identical on different OS platform)





You may also execute kinit command with principal and password to get TGT:

$ kinit kyuubi_user@KYUUBI.APACHE.ORG
Password for kyuubi_user@KYUUBI.APACHE.ORG: password 

(Command is identical on different OS platform)





If the command executes successfully, TGT will be store in ticket cache.
Use klist command to print TGT info in ticket cache:

$ klist

Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: kyuubi_user@KYUUBI.APACHE.ORG

Valid starting       Expires              Service principal
2021-12-13T18:44:58  2021-12-14T04:44:58  krbtgt/KYUUBI.APACHE.ORG@KYUUBI.APACHE.ORG
    renew until 2021-12-14T18:44:57
    
(Command is identical on different OS platform. Ticket cache location may be different.)





Ticket cache may have different storage type on different OS platform.

For example,




	OS
	Default Ticket Cache Type and Location





	Linux
	FILE:/tmp/krb5cc_%{uid}



	MacOS
	KCM:%{uid}:%{gid}



	Windows
	API:krb5cc




You can find your ticket cache type and location in the Ticket cache part of klist output.

Note:


	Ensure your ticket cache type is FILE as JVM can only read ticket cache stored as file.


	Do not store TGT into default ticket cache if you are running Kyuubi and execute kinit on the same
host with the same OS user. The default ticket cache is already used by Kyuubi server.




Either because the default ticket cache is not a file, or because it is used by Kyuubi server, you
should store ticket cache in another file location.
This can be achieved by specifying a file location with -c argument in kinit command.

For example,

$ kinit -c /tmp/krb5cc_beeline -kt kyuubi_user.keytab kyuubi_user@KYUUBI.APACHE.ORG

(Command is identical on different OS platform)





To check the ticket cache, specify the file location with -c argument in klist command.

For example,

$ klist -c /tmp/krb5cc_beeline

(Command is identical on different OS platform)







Add Kerberos Client Configuration File to JVM Search Path

The JVM, which JDBC client is running on, also needs to read the Kerberos client configuration file.
However, JVM uses different default locations from Kerberos client, and does not honour KRB5_CONFIG
environment variable.




	OS
	JVM Search Paths





	Linux
	System scope: /etc/krb5.conf



	MacOS
	User scope: $HOME/Library/Preferences/edu.mit.Kerberos
System scope: /etc/krb5.conf



	Windows
	User scope: %USERPROFILE%\krb5.ini
System scope: %windir%\krb5.ini




You can use JVM system property, java.security.krb5.conf, to overwrite the default location.



Add Kerberos Ticket Cache to JVM Search Path

JVM determines the ticket cache location in the following order:


	Path specified by KRB5CCNAME environment variable. Path must start with FILE:.


	/tmp/krb5cc_%{uid} on Unix-like OS, e.g. Linux, MacOS


	${user.home}/krb5cc_${user.name} if ${user.name} is not null


	${user.home}/krb5cc if ${user.name} is null




Note:


	${user.home} and ${user.name} are JVM system properties.


	${user.home} should be replaced with ${user.dir} if ${user.home} is null.




Ensure your ticket cache is stored as a file and put it in one of the above locations.



Ensure core-site.xml Exists in Classpath

Like hadoop clients, hadoop.security.authentication should be set to KERBEROS in core-site.xml
to let Hive JDBC driver use Kerberos authentication. core-site.xml should be placed under beeline’s
classpath or BI tools’ classpath.


Beeline

Here are the usual locations where core-site.xml should exist for different beeline distributions:




	Client
	Location
	Note





	Hive beeline
	$HADOOP_HOME/etc/hadoop
	Hive resolves $HADOOP_HOME and use $HADOOP_HOME/bin/hadoop command to launch beeline. $HADOOP_HOME/etc/hadoop is in hadoop command's classpath.



	Spark beeline
	$HADOOP_CONF_DIR
	In $SPARK_HOME/conf/spark-env.sh, $HADOOP_CONF_DIR often be set to the directory containing hadoop client configuration files.



	Kyuubi beeline
	$HADOOP_CONF_DIR
	In $KYUUBI_HOME/conf/kyuubi-env.sh, $HADOOP_CONF_DIR often be set to the directory containing hadoop client configuration files.




If core-site.xml is not found in above locations, create one with the following content:

<configuration>
  <property>
    <name>hadoop.security.authentication</name>
    <value>kerberos</value>
  </property>
</configuration>







BI Tools

As to BI tools, ways to add core-site.xml varies.
Take DBeaver as an example. We can add files to DBeaver’s classpath through its Global libraries preference.
As Global libraries only accepts jar files, you should package core-site.xml into a jar file.

$ jar -c -f core-site.jar core-site.xml

(Command is identical on different OS platform)








Connect with JDBC URL

The last step is to connect to Kyuubi with the right JDBC URL.
The JDBC URL should be in format:

jdbc:hive2://<kyuubi_server_address>:<kyuubi_server_port>/<db>;principal=<kyuubi_server_principal>





or

jdbc:hive2://<kyuubi_server_address>:<kyuubi_server_port>/<db>;kyuubiServerPrincipal=<kyuubi_server_principal>





Note:


	principal is inherited from Hive JDBC Driver and is a little ambiguous, and we could use kyuubiServerPrincipal as its alias.


	kyuubi_server_principal is the value of kyuubi.kinit.principal set in kyuubi-defaults.conf.


	As a command line argument, JDBC URL should be quoted to avoid being split into 2 commands by “;”.


	As to DBeaver, <db>;principal=<kyuubi_server_principal> or <db>;kyuubiServerPrincipal=<kyuubi_server_principal> should be set as the Database/Schema argument.








            

          

      

      

    

  

  
    
    

    Configure Kyuubi to use LDAP Authentication
    

    

    

    

    
 
  

    
      
          
            
  
Configure Kyuubi to use LDAP Authentication

Kyuubi can be configured to enable frontend LDAP authentication for clients, such as the BeeLine, or the JDBC and ODBC drivers.
At present, only simple LDAP authentication mechanism involving username and password is supported. The client sends
a username and password to the Kyuubi server, and the Kyuubi server validates these credentials using an external LDAP service.


Enable LDAP Authentication

To enable LDAP authentication for Kyuubi, LDAP-related configurations is required to be configured in
$KYUUBI_HOME/conf/kyuubi-defaults.conf on each node where Kyuubi server is installed.

For example,

kyuubi.authentication=LDAP
kyuubi.authentication.ldap.baseDN=dc=org
kyuubi.authentication.ldap.domain=apache.org
kyuubi.authentication.ldap.binddn=uid=kyuubi,OU=Users,DC=apache,DC=org
kyuubi.authentication.ldap.bindpw=kyuubi123123
kyuubi.authentication.ldap.url=ldap://hostname.com:389/







User and Group Filter in LDAP

Kyuubi also supports complex LDAP cases as Apache Hive [https://cwiki.apache.org/confluence/display/Hive/User+and+Group+Filter+Support+with+LDAP+Atn+Provider+in+HiveServer2#UserandGroupFilterSupportwithLDAPAtnProviderinHiveServer2-UserandGroupFilterSupportwithLDAP] does.

For example,

# Group Membership
kyuubi.authentication.ldap.groupClassKey=groupOfNames
kyuubi.authentication.ldap.groupDNPattern=CN=%s,OU=Groups,DC=apache,DC=org
kyuubi.authentication.ldap.groupFilter=group1,group2
kyuubi.authentication.ldap.groupMembershipKey=memberUid
# User Search List
kyuubi.authentication.ldap.userDNPattern=CN=%s,CN=Users,DC=apache,DC=org
kyuubi.authentication.ldap.userFilter=hive-admin,hive,hive-test,hive-user
# Custom Query
kyuubi.authentication.ldap.customLDAPQuery=(&(objectClass=group)(objectClass=top)(instanceType=4)(cn=Domain*)), (&(objectClass=person)(|(sAMAccountName=admin)(|(memberOf=CN=Domain Admins,CN=Users,DC=domain,DC=com)(memberOf=CN=Administrators,CN=Builtin,DC=domain,DC=com))))





Please refer to Settings for LDAP authentication in Kyuubi
for all configurations.





            

          

      

      

    

  

  
    
    

    Configure Kyuubi to Use JDBC Authentication
    

    

    

    

    
 
  

    
      
          
            
  
Configure Kyuubi to Use JDBC Authentication

Kyuubi supports authentication via JDBC query. A query is prepared with user/password value and sent to the database configured in JDBC URL. Authentication passes if the result set is not empty.

The SQL statement must start with the SELECT clause. Placeholders are supported and listed below for substitution:


	${user}


	${password}




For example, SELECT 1 FROM auth_db.auth_table WHERE user=${user} AND  passwd=MD5(CONCAT(salt,${password})) will be prepared as SELECT 1 FROM auth_db.auth_table WHERE user=? AND passwd=MD5(CONCAT(salt,?)) with value replacement of user and password in string type.


Enable JDBC Authentication

To enable the JDBC authentication method, we need to


	Put the JDBC driver jar file to $KYUUBI_HOME/jars directory to make it visible for
the classpath of the kyuubi server.


	Configure the following properties to $KYUUBI_HOME/conf/kyuubi-defaults.conf
on each node where kyuubi server is installed.






Configure the authentication properties

Configure the following properties to $KYUUBI_HOME/conf/kyuubi-defaults.conf on each node where kyuubi server is installed.

kyuubi.authentication=JDBC
kyuubi.authentication.jdbc.driver.class = com.mysql.jdbc.Driver
kyuubi.authentication.jdbc.url = jdbc:mysql://127.0.0.1:3306/auth_db
kyuubi.authentication.jdbc.user = bowenliang123
kyuubi.authentication.jdbc.password = bowenliang123@kyuubi
kyuubi.authentication.jdbc.query = SELECT 1 FROM auth_table WHERE user=${user} AND passwd=MD5(CONCAT(salt,${password}))







Authentication with In-memory Database

Used with auto created in-memory database, JDBC authentication could be applied for token validation without starting up a dedicated database service or setting up a custom plugin.

Consider authentication for a pair of a username and a token which contacted with an expire_time in ‘yyyyMMddHHmm’ format and a MD5 signature generated with sequence of expire_time, username and a secret key. With the following example, an H2 in-memory database will be auto crated with Kyuubi Server and used for authentication with its system function HASH and checking token expire time with NOW().

kyuubi.authentication=JDBC
kyuubi.authentication.jdbc.driver.class = org.h2.Driver
kyuubi.authentication.jdbc.url = jdbc:h2:mem:
kyuubi.authentication.jdbc.user = no_user
kyuubi.authentication.jdbc.query = SELECT 1 FROM ( \
  SELECT ${user} as username, 'secret_key' as secret_key, \
  SUBSTRING(${password}, 0, 12) as expire_time, \
  SUBSTRING(${password}, 13) as signed \
  ) WHERE signed = RAWTOHEX(HASH('MD5', CONCAT(secret_key, username, expire_time))) \
  AND PARSEDATETIME(expire_time,'yyyyMMddHHmm') > NOW()









            

          

      

      

    

  

  
    
    

    Configure Kyuubi to use Custom Authentication
    

    

    

    

    
 
  

    
      
          
            
  
Configure Kyuubi to use Custom Authentication

Besides the builtin authentication methods, kyuubi supports custom
authentication implementations of org.apache.kyuubi.service.authentication.PasswdAuthenticationProvider.

package org.apache.kyuubi.service.authentication

import javax.security.sasl.AuthenticationException

trait PasswdAuthenticationProvider {

  /**
   * The authenticate method is called by the Kyuubi Server authentication layer
   * to authenticate users for their requests.
   * If a user is to be granted, return nothing/throw nothing.
   * When a user is to be disallowed, throw an appropriate [[AuthenticationException]].
   *
   * @param user     The username received over the connection request
   * @param password The password received over the connection request
   *
   * @throws AuthenticationException When a user is found to be invalid by the implementation
   */
  @throws[AuthenticationException]
  def authenticate(user: String, password: String): Unit
}






Build A Custom Authenticator

To create custom Authenticator class derived from the above interface, we need to:


	Referencing the library




<dependency>
   <groupId>org.apache.kyuubi</groupId>
   <artifactId>kyuubi-common_2.12</artifactId>
   <version>1.8.0</version>
   <scope>provided</scope>
</dependency>


	Implement PasswdAuthenticationProvider - Sample Code [https://github.com/kyuubilab/example-custom-authentication/blob/main/src/main/scala/org/apache/kyuubi/example/MyAuthenticationProvider.scala]






Enable Custom Authentication

To enable the custom authentication method, we need to


	Put the jar package to $KYUUBI_HOME/jars directory to make it visible for
the classpath of the kyuubi server.


	Configure the following properties to $KYUUBI_HOME/conf/kyuubi-defaults.conf
on each node where kyuubi server is installed.





	Restart all the kyuubi server instances








            

          

      

      

    

  

  
    
    

    Kyuubi Authorization Guide
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Authorization Guide



	Spark AuthZ Plugin
	Overview

	Building

	Installing












            

          

      

      

    

  

  
    
    

    Kyuubi Spark AuthZ Plugin
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Spark AuthZ Plugin


New in version 1.6.0.





	Overview
	Authorization in Kyuubi

	The Plugin Itself





	Building
	Build with Apache Maven

	Test with ScalaTest Maven plugin





	Installing
	Pre-install

	Install

	Configure












            

          

      

      

    

  

  
    
    

    Kyuubi AuthZ Plugin For Spark SQL
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi AuthZ Plugin For Spark SQL

Security is one of the fundamental features for enterprise adoption with Kyuubi.
When deploying Kyuubi against secured clusters,
storage-based authorization is enabled by default, which only provides file-level
coarse-grained authorization mode.
When row/column-level fine-grained access control is required,
we can enhance the data access model with the Kyuubi Spark AuthZ plugin.


Authorization in Kyuubi


Storage-based Authorization

As Kyuubi supports multi tenancy, a tenant can only visit authorized resources,
including computing resources, data, etc.
Most file systems, such as HDFS, support ACL management based on files and directories.

A so called Storage-based authorization mode is supported by Kyuubi by default.
In this model, all objects, such as databases, tables, partitions, in meta layer are mapping to folders or files in the storage layer,
as well as their permissions.

Storage-based authorization offers users with database, table and partition-level coarse-gained access control.



SQL-standard authorization with Ranger

A SQL-standard authorization usually offers a row/colum-level fine-grained access control to meet the real-world data security need.

Apache Ranger [https://ranger.apache.org/] is a framework to enable, monitor and manage comprehensive data security across the Hadoop platform.
This plugin enables Kyuubi with data and metadata control access ability for Spark SQL Engines, including,


	Column-level fine-grained authorization


	Row-level fine-grained authorization, a.k.a. Row-level filtering


	Data masking







The Plugin Itself

Kyuubi Spark Authz Plugin itself provides general purpose for ACL management for data & metadata while using Spark SQL.
It is not necessary to deploy it with the Kyuubi server and engine, and can be used as an extension for any Spark SQL jobs.
However, the authorization always requires a robust authentication layer and multi tenancy support, so Kyuubi is a perfect match.


Restrict security configuration

End-users can disable the AuthZ plugin by modifying Spark’s configuration. For example:

select * from parquet.`/path/to/table`





set spark.sql.optimizer.excludedRules=org.apache.kyuubi.plugin.spark.authz.ranger.RuleAuthorization





Kyuubi provides a mechanism to ban security configurations to enhance the security of production environments


Note

How do we modify the Spark engine configurations please refer to the documentation Spark Configurations




Restrict session level config

You can specify config kyuubi.session.conf.ignore.list values and config kyuubi.session.conf.restrict.list values to disable changing session+ level configuration on the server side. For example:

kyuubi.session.conf.ignore.list    spark.driver.memory,spark.sql.optimizer.excludedRules





kyuubi.session.conf.restrict.list    spark.driver.memory,spark.sql.optimizer.excludedRules







Restrict operation level config

You can specify config spark.kyuubi.conf.restricted.list values to disable changing operation level configuration on the engine side, this means that the config key in the restricted list cannot set dynamic configuration via SET syntax. For examples:

spark.kyuubi.conf.restricted.list  spark.sql.adaptive.enabled,spark.sql.adaptive.skewJoin.enabled






Note


	Note that config spark.sql.runSQLOnFiles values and config spark.sql.extensions values are by default in the engine restriction configuration list


	A set statement with key equal to spark.sql.optimizer.excludedRules and value containing org.apache.kyuubi.plugin.spark.authz.ranger.* also does not allow modification.












            

          

      

      

    

  

  
    
    

    Building Kyuubi Spark AuthZ Plugin
    

    

    

    

    
 
  

    
      
          
            
  
Building Kyuubi Spark AuthZ Plugin


Build with Apache Maven

Kyuubi Spark AuthZ Plugin is built using Apache Maven [https://maven.apache.org].
To build it, cd to the root direct of kyuubi project and run:

build/mvn clean package -pl :kyuubi-spark-authz_2.12 -DskipTests





After a while, if everything goes well, you will get the plugin finally in two parts:


	The main plugin jar, which is under ./extensions/spark/kyuubi-spark-authz/target/kyuubi-spark-authz_${scala.binary.version}-${project.version}.jar


	The least transitive dependencies needed, which are under ./extensions/spark/kyuubi-spark-authz/target/scala-${scala.binary.version}/jars





Build against Different Apache Spark Versions

The maven option spark.version is used for specifying Spark version to compile with and generate corresponding transitive dependencies.
By default, it is always built with the latest spark.version defined in kyuubi project main pom file.
Sometimes, it may be incompatible with other Spark distributions, then you may need to build the plugin on your own targeting the Spark version you use.

For example,

build/mvn clean package -pl :kyuubi-spark-authz_2.12 -DskipTests -Dspark.version=3.0.2





The available spark.versions are shown in the following table.




	Spark Version
	Supported
	Remark





	master
	√
	-



	3.3.x
	√
	-



	3.2.x
	√
	-



	3.1.x
	√
	-



	3.0.x
	√
	-



	2.4.x and earlier
	×
	PR 2367 is used to track how we work with older releases with scala 2.11




Currently, Spark released with Scala 2.12 are supported.



Build against Different Apache Ranger Versions

The maven option ranger.version is used for specifying Ranger version to compile with and generate corresponding transitive dependencies.
By default, it is always built with the latest ranger.version defined in kyuubi project main pom file.
Sometimes, it may be incompatible with other Ranger Admins, then you may need to build the plugin on your own targeting the Ranger Admin version you connect with.

build/mvn clean package -pl :kyuubi-spark-authz_2.12 -DskipTests -Dranger.version=0.7.0





The available ranger.versions are shown in the following table.




	Ranger Version
	Supported
	Remark





	2.4.x
	√
	-



	2.3.x
	√
	-



	2.2.x
	√
	-



	2.1.x
	√
	-



	2.0.x
	√
	-



	1.2.x
	√
	-



	1.1.x
	√
	-



	1.0.x
	√
	-



	0.7.x
	√
	-



	0.6.x
	X
	KYUUBI-4672 reported unresolved failures.




Currently, all ranger releases are supported.




Test with ScalaTest Maven plugin

If you omit -DskipTests option in the command above, you will also get all unit tests run.

build/mvn clean package -pl :kyuubi-spark-authz_2.12





If any bug occurs and you want to debug the plugin yourself, you can configure -DdebugForkedProcess=true and -DdebuggerPort=5005(optional).

build/mvn clean package -pl :kyuubi-spark-authz_2.12 -DdebugForkedProcess=true





The tests will suspend at startup and wait for a remote debugger to attach to the configured port.

We will appreciate if you can share the bug or the fix to the Kyuubi community.





            

          

      

      

    

  

  
    
    

    Installing and Configuring Kyuubi Spark AuthZ Plugin
    

    

    

    

    
 
  

    
      
          
            
  
Installing and Configuring Kyuubi Spark AuthZ Plugin


Pre-install


	Apache Ranger [https://ranger.apache.org/]

This plugin works as a ranger rest client with Apache Ranger admin server to do privilege check.
Thus, a ranger server need to be installed ahead and available to use.



	Building(optional)

If your ranger admin or spark distribution is not compatible with the official pre-built artifact [https://mvnrepository.com/artifact/org.apache.kyuubi/kyuubi-spark-authz] in maven central.
You need to build the plugin targeting the spark/ranger you are using by yourself.







Install

With the kyuubi-spark-authz_*.jar and its transitive dependencies available for spark runtime classpath, such as


	Copied to $SPARK_HOME/jars, or


	Specified to spark.jars configuration






Configure


Settings for Connecting Ranger Admin


ranger-spark-security.xml


	Create ranger-spark-security.xml in $SPARK_HOME/conf and add the following configurations
for pointing to the right Ranger admin server.




<configuration>
    <property>
        <name>ranger.plugin.spark.policy.rest.url</name>
        <value>ranger admin address like http://ranger-admin.org:6080</value>
    </property>

    <property>
        <name>ranger.plugin.spark.service.name</name>
        <value>a ranger hive service name</value>
    </property>

    <property>
        <name>ranger.plugin.spark.policy.cache.dir</name>
        <value>./a ranger hive service name/policycache</value>
    </property>

    <property>
        <name>ranger.plugin.spark.policy.pollIntervalMs</name>
        <value>5000</value>
    </property>

    <property>
        <name>ranger.plugin.spark.policy.source.impl</name>
        <value>org.apache.ranger.admin.client.RangerAdminRESTClient</value>
    </property>

</configuration>






Using Macros in Row Level Filters

Macros are now supported for using user/group/tag in row filter expressions, introduced in Ranger 2.3 [https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+2.3.0+-+Release+Notes]. This feature helps significantly simplify row filter expressions by using user/group/tag’s attributes instead of explicit conditions. Considering a user with an attribute born_city of value Guangzhou , the row filter condition as city='${{USER.born_city}}' will be transformed to city='Guangzhou' in execution plan. More supported macros and usage refer to RANGER-3605 [https://issues.apache.org/jira/browse/RANGER-3605] and RANGER-3550 [https://issues.apache.org/jira/browse/RANGER-3550]. Add the following configs to ranger-spark-security.xml to enable UserStore Enricher required by macros.

    <property>
        <name>ranger.plugin.spark.enable.implicit.userstore.enricher</name>
        <value>true</value>
        <description>Enable UserStoreEnricher for fetching user and group attributes if using macros or scripts in row-filters since Ranger 2.3</description>
    </property>

    <property>
        <name>ranger.plugin.hive.policy.cache.dir</name>
        <value>./a ranger hive service name/policycache</value>
        <description>As Authz plugin reuses hive service def, a policy cache path is required for caching UserStore and Tags for "hive" service def, while "ranger.plugin.spark.policy.cache.dir config" is the path for caching policies in service. </description>
    </property>    







Showing all disallowed privileges

By default, Authz plugin checks required privileges one by one and throw the first unsatisfied privilege in exception. By setting ranger.plugin.spark.authorize.in.single.call to true, Authz plugin executes access checks in single call and throws all disallowed privileges in exception message.

<property>
    <name>ranger.plugin.spark.authorize.in.single.call</name>
    <value>true</value>
    <description>Enable access checks in single call with all disallowed privileges thrown in exception. Default value is false.</description>
</property>








ranger-spark-audit.xml

Create ranger-spark-audit.xml in $SPARK_HOME/conf and add the following configurations
to enable/disable auditing.

<configuration>

    <property>
        <name>xasecure.audit.is.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>xasecure.audit.destination.db</name>
        <value>false</value>
    </property>

    <property>
        <name>xasecure.audit.destination.db.jdbc.driver</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>

    <property>
        <name>xasecure.audit.destination.db.jdbc.url</name>
        <value>jdbc:mysql://10.171.161.78/ranger</value>
    </property>

    <property>
        <name>xasecure.audit.destination.db.password</name>
        <value>rangeradmin</value>
    </property>

    <property>
        <name>xasecure.audit.destination.db.user</name>
        <value>rangeradmin</value>
    </property>

</configuration>








Settings for Spark Session Extensions

Add org.apache.kyuubi.plugin.spark.authz.ranger.RangerSparkExtension to the spark configuration spark.sql.extensions.

spark.sql.extensions=org.apache.kyuubi.plugin.spark.authz.ranger.RangerSparkExtension










            

          

      

      

    

  

  
    
    

    Kinit Auxiliary Service
    

    

    

    

    
 
  

    
      
          
            
  
Kinit Auxiliary Service

Kinit auxiliary service is a critical service both for authentication between Kyuubi client/server
and for authentication between Kyuubi server/Hadoop cluster in a Kerberos environment.
It will get a Kerberos Ticket Cache from KDC and periodically re-kinit to keep the Ticket Cache fresh.

Note:


	Kinit auxiliary service is critical to Kyuubi Kerberos authentication, but not vice versa.


	Kinit auxiliary service can also work with other authentication mode.





Installing and Configuring the Kerberos Clients

Usually, Kerberos client is installed as default. You can validate it using klist tool.

$ klist -V
Kerberos 5 version 1.15.1





If the client is not installed, you should install it ahead based on the OS platform that you prepare to run Kyuubi.

krb5.conf is a configuration file for tuning up the creation of Kerberos ticket cache.
The default location is /etc on Linux,
and we can use KRB5_CONFIG environmental variable to overwrite the location of the configuration file.

Replace or configure krb5.conf to point to the KDC.



Kerberos Ticket

Kerberos client is aimed to generate a Ticket Cache file.
Then, Kyuubi can use this Ticket Cache to authenticate with those kerberized services,
e.g. HDFS, YARN, and Hive Metastore server, etc.

A Kerberos ticket cache contains a service and a client principal names,
lifetime indicators, flags, and the credential itself, e.g.

$ klist

Ticket cache: FILE:/tmp/krb5cc_5441
Default principal: spark/kyuubi.host.name@KYUUBI.APACHE.ORG

Valid starting       Expires              Service principal
2020-11-25T13:17:18  2020-11-26T13:17:18  krbtgt/KYUUBI.APACHE.ORG@KYUUBI.APACHE.ORG
	renew until 2020-12-02T13:17:18





Kerberos credentials can be stored in Kerberos ticket cache.
For example, /tmp/krb5cc_5441 in the above case.

They are valid for relatively short period. So, we always need to refresh it for long-running services like Kyuubi.



Configurations




	Key
	Default
	Meaning
	Since





	kyuubi.kinit.principal
	<undefined>

	Name of the Kerberos principal.

	1.0.0




	kyuubi.kinit.keytab
	<undefined>

	Location of Kyuubi server's keytab.

	1.0.0




	kyuubi.kinit.interval
	PT1H

	How often will Kyuubi server run kinit -kt [keytab] [principal] to renew the local Kerberos credentials cache

	1.0.0




	kyuubi.kinit.max.attempts
	10

	How many times will kinit process retry

	1.0.0





When working with a Kerberos-enabled Hadoop cluster, we should ensure that hadoop.security.authentication
is set to KERBEROS in $HADOOP_CONF_DIR/core-site.xml or $KYUUBI_HOME/conf/kyuubi-defaults.conf.
Then we need to specify kyuubi.kinit.principal and kyuubi.kinit.keytab for authentication.

For example,

kyuubi.kinit.principal=spark/kyuubi.apache.org@KYUUBI.APACHE.ORG
kyuubi.kinit.keytab=/path/to/kyuuib.keytab





Note:
kyuubi.kinit.principal must be in the format: <user>/<host>@<realm>, and <host> must
be a FQDN of the host Kyuubi is running.

Kyuubi will use this principal to impersonate client users,
so the cluster should enable it to do impersonation for some particular user from some particular hosts.

For example,

hadoop.proxyuser.<user name in principal>.groups *
hadoop.proxyuser.<user name in principal>.hosts *







Further Readings


	Hadoop in Secure Mode [https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SecureMode.html]


	Use Kerberos for authentication in Spark [https://spark.apache.org/docs/latest/security.html#kerberos]








            

          

      

      

    

  

  
    
    

    Hadoop Credentials Manager
    

    

    

    

    
 
  

    
      
          
            
  
Hadoop Credentials Manager

In order to pass the authentication of a kerberos secured hadoop cluster, kyuubi currently submits
engines in two ways:


	Submits with current kerberos user and extra SparkSubmit argument --proxy-user.


	Submits with spark.kerberos.principal and spark.kerberos.keytab specified.




If engine is submitted with --proxy-user specified, its delegation tokens of hadoop cluster
services are obtained by current kerberos user and can not be renewed by itself.
Thus, engine’s lifetime is limited by the lifetime of delegation tokens.
To remove this limitation, kyuubi renews delegation tokens at server side in Hadoop Credentials Manager.

Engine submitted with principal and keytab can renew delegation tokens by itself.
But for implementation simplicity, kyuubi server will also renew delegation tokens for it.


Configurations


Cluster Services

Kyuubi currently supports renew delegation tokens of Hadoop filesystems and Hive metastore servers.


Hadoop client configurations

Set HADOOP_CONF_DIR in $KYUUBI_HOME/conf/kyuubi-env.sh if it hasn’t been set yet, e.g.

$ echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> $KYUUBI_HOME/conf/kyuubi-env.sh





Extra Hadoop filesystems can be specified in $KYUUBI_HOME/conf/kyuubi-defaults.conf
by kyuubi.credentials.hadoopfs.uris in comma separated list.



Hive metastore configurations


Via kyuubi-defaults.conf

Specify Hive metastore configurations In $KYUUBI_HOME/conf/kyuubi-defaults.conf. Hadoop Credentials
Manager will load the configurations when initialized.



Via hive-site.xml

Place your copy of hive-site.xml into $KYUUBI_HOME/conf, Kyuubi will load this config file to
its classpath.

This version of configuration has lower priority than those in $KYUUBI_HOME/conf/kyuubi-defaults.conf.



Via JDBC Connection URL

Hive configurations specified in JDBC connection URL are ignored by Hadoop Credentials Manager as
Hadoop Credentials Manager is initialized when Kyuubi server starts.





Credentials Renewal




	Key
	Default
	Meaning
	Type
	Since





	kyuubi.credentials.hadoopfs.enabled
	true

	Whether to renew Hadoop filesystem delegation tokens

	boolean

	1.4.0




	kyuubi.credentials.hadoopfs.uris
	

	Extra Hadoop filesystem URIs for which to request delegation tokens. The filesystem that hosts fs.defaultFS does not need to be listed here.

	seq

	1.4.0




	kyuubi.credentials.hive.enabled
	true

	Whether to renew Hive metastore delegation token

	boolean

	1.4.0




	kyuubi.credentials.renewal.interval
	PT1H

	How often Kyuubi renews one user's delegation tokens

	duration

	1.4.0




	kyuubi.credentials.renewal.retry.wait
	PT1M

	How long to wait before retrying to fetch new credentials after a failure.

	duration

	1.4.0







Required Security Configs

The necessary configurations for hdfs and hive to obtain delegation token are as follows:




	Key
	Meaning
	value





	hadoop.security.authentication
	Set the authentication for the cluster

	kerberos




	hive.metastore.uris
	URI for client to contact metastore server

	thrift://{metastoreHost}:{metastorePort}}




	hive.metastore.sasl.enabled
	If true, the metastore thrift interface will be secured with SASL.Clients must authenticate with Kerberos.

	true




	hive.metastore.kerberos.principal
	The service principal for the metastore thrift server. The special string _HOST will be replaced automatically with the correct host name.

	for example hive/_HOST@${realm}




	hive.metastore.kerberos.keytab.file
	The path to the Kerberos Keytab file containing the metastore thrift server's service principal.

	for example /etc/security/keytabs/hive.service.keytab










            

          

      

      

    

  

  
    
    

    Monitoring
    

    

    

    

    
 
  

    
      
          
            
  
Monitoring

In this section, you will learn how to monitor Kyuubi with logging, metrics etc..



	1. Monitoring Kyuubi - Logging System
	1.1. Logs of Kyuubi Server

	1.2. Logs of Spark SQL Engine

	1.3. Logs of Flink SQL Engine

	1.4. Operation Logs

	1.5. Further Readings





	2. Monitoring Kyuubi - Server Metrics
	2.1. Configurations

	2.2. Metrics





	3. Trouble Shooting
	3.1. Common Issues












            

          

      

      

    

  

  
    
    

    1. Monitoring Kyuubi - Logging System
    

    

    

    

    
 
  

    
      
          
            
  
1. Monitoring Kyuubi - Logging System

Kyuubi uses Apache Log4j2 [https://logging.apache.org/log4j/2.x/] for logging since version v1.5.0. For versions v1.4.1 and below, it uses Apache Log4j [https://logging.apache.org].

In general, there are mainly three components in the Kyuubi architecture that will produce component-oriented logs to help you trace breadcrumbs for SQL workloads against Kyuubi.


	Logs of Kyuubi Server


	Logs of Kyuubi Engines


	Operation logs




In addition, a Kyuubi deployment for production usually relies on some other external systems.
For example, both Kyuubi servers and engines will use Apache Zookeeper [https://zookeeper.apache.org/] for service discovery.
The instructions for external system loggings will not be included in this article.


1.1. Logs of Kyuubi Server

Logs of Kyuubi Server show us the activities of the server instance including how start/stop, how does it response client requests, etc.


1.1.1. Configuring Server Logging


Basic Configurations

You can configure it by adding a log4j2.xml file in the $KYUUBI_HOME/conf directory.
One way to start is to make a copy of the existing log4j2.xml.template located there.

For example,

# cd $KYUUBI_HOME
cp conf/log4j2.xml.template conf/log4j2.xml





With or without the above step, by default the server logging will redirect the logs to a file named kyuubi-${env:USER}-org.apache.kyuubi.server.KyuubiServer-${env:HOSTNAME}.out under the directory of $KYUUBI_HOME/logs.

For example, you can easily find where the server log goes when staring a Kyuubi server from the console output.

$ export SPARK_HOME=/Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2
$ cd ~/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin
$ bin/kyuubi start





Starting Kyuubi Server from /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin
Warn: Not find kyuubi environment file /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/conf/kyuubi-env.sh, using default ones...
JAVA_HOME: /Library/Java/JavaVirtualMachines/jdk1.8.0_251.jdk/Contents/Home
KYUUBI_HOME: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin
KYUUBI_CONF_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/conf
KYUUBI_LOG_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/logs
KYUUBI_PID_DIR: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/pid
KYUUBI_WORK_DIR_ROOT: /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/work
SPARK_HOME: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2
SPARK_CONF_DIR: /Users/kentyao/Downloads/spark/spark-3.2.0-bin-hadoop3.2/conf
HADOOP_CONF_DIR:
YARN_CONF_DIR:
Starting org.apache.kyuubi.server.KyuubiServer, logging to /Users/kentyao/svn-kyuubi/v1.3.1-incubating-rc0/apache-kyuubi-1.3.1-incubating-bin/logs/kyuubi-kentyao-org.apache.kyuubi.server.KyuubiServer-hulk.local.out
Welcome to
  __  __                           __
 /\ \/\ \                         /\ \      __
 \ \ \/'/'  __  __  __  __  __  __\ \ \____/\_\
  \ \ , <  /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
   \ \ \\`\\ \ \_\ \ \ \_\ \ \ \_\ \\ \ \L\ \ \ \
    \ \_\ \_\/`____ \ \____/\ \____/ \ \_,__/\ \_\
     \/_/\/_/`/___/> \/___/  \/___/   \/___/  \/_/
                /\___/
                \/__/







KYUUBI_LOG_DIR

You may also notice that there is an environment variable called KYUUBI_LOG_DIR in the above example.

KYUUBI_LOG_DIR determines which folder we want to put our server log files.

For example, the below command will locate the log files to /Users/kentyao/tmp.

$ mkdir /Users/kentyao/tmp
$ KYUUBI_LOG_DIR=/Users/kentyao/tmp bin/kyuubi start





Starting org.apache.kyuubi.server.KyuubiServer, logging to /Users/kentyao/tmp/kyuubi-kentyao-org.apache.kyuubi.server.KyuubiServer-hulk.local.out







KYUUBI_MAX_LOG_FILES

KYUUBI_MAX_LOG_FILES controls how many log files will be remained after a Kyuubi server reboots.



Custom Log4j2 Settings

Taking control of $KYUUBI_HOME/conf/log4j2.xml will also give us the ability of customizing server logging as we want.

For example, we can disable the console appender and enable the file appender like,

<Configuration status="INFO">
  <Appenders>
    <File name="fa" fileName="log/dummy.log">
      <PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss.SSS} %p %c: %m%n%ex"/>
      <Filters>
        <RegexFilter regex=".*Thrift error occurred during processing of message.*" onMatch="DENY" onMismatch="NEUTRAL"/>
      </Filters>
    </File>
  </Appenders>
  <Loggers>
    <Root level="INFO">
      <AppenderRef ref="fa"/>
    </Root>
  </Loggers>
</Configuration>





Then everything goes to log/dummy.log.





1.2. Logs of Spark SQL Engine

Spark SQL Engine is one type of Kyuubi Engines and also a typical Spark application.
Thus, its logs mainly contain the logs of a Spark Driver.
Meanwhile, it also includes how all the services of an engine start/stop, how does it response the incoming calls from Kyuubi servers, etc.

In general, when an exception occurs, we are able to find more information and clues in the engine’s logs.


1.2.1. Configuring Engine Logging

Please refer to Apache Spark online documentation -Configuring Logging [https://spark.apache.org/docs/latest/configuration.html#configuring-logging] for instructions.



1.2.2. Where to Find the Engine Log

The engine logs locate differently based on the deploy mode and the cluster manager.
When using local backend or client deploy mode for other cluster managers, such as YARN, you can find the whole engine log in $KYUUBI_WORK_DIR_ROOT/${session username}/kyuubi-spark-sql-engine.log.${num}.
Different session users have different folders to group all live and historical engine logs.
Each engine will have one and only engine log.
When using cluster deploy mode, the local engine logs only contain very little information, the main parts of engine logs are on the remote driver side, e.g. for YARN cluster, they are in ApplicationMasters’ log.




1.3. Logs of Flink SQL Engine

Flink SQL Engine is one type of Kyuubi Engines and also a typical Flink application.
Thus, its logs mainly contain the logs of a Flink JobManager and TaskManager.
Meanwhile, it also includes how all the services of an engine start/stop, how does it response the incoming calls from Kyuubi servers, etc.

In general, when an exception occurs, we are able to find more information and clues in the engine’s logs.


1.3.1. Configuring Engine Logging

Please refer to Apache Flink online documentation -Configuring Logging [https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/advanced/logging] for instructions.



1.3.2. Where to Find the Engine Log

The engine logs locate differently based on the deploy mode and the cluster manager.
When using local backend or client deploy mode for other cluster managers, such as YARN, you can find the whole engine log in $KYUUBI_WORK_DIR_ROOT/${session username}/kyuubi-flink-sql-engine.log.${num}.
Different session users have different folders to group all live and historical engine logs.
Each engine will have one and only engine log.
When using cluster deploy mode, the local engine logs only contain very little information, the main parts of engine logs are on the remote driver side, e.g. for YARN cluster, they are in ApplicationMasters’ log.




1.4. Operation Logs

Operation log will show how SQL queries are executed, such as query planning, execution, and statistic reports.

Operation logs can reveal directly to end-users how their queries are being executed on the server/engine-side, including some process-oriented information, and why their queries are slow or in error.

For example, when you, as an end-user, use beeline to connect a Kyuubi server and execute query like below.

bin/beeline -u 'jdbc:hive2://10.242.189.214:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=kyuubi' -n kent -e 'select * from src;'





You will both get the final results and the corresponding operation logs telling you the journey of the query.

0: jdbc:hive2://10.242.189.214:2181/> select * from src;
2021-10-27 17:00:19.399 INFO operation.ExecuteStatement: Processing kent's query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: INITIALIZED_STATE -> PENDING_STATE, statement: select * from src
2021-10-27 17:00:19.401 INFO operation.ExecuteStatement: Processing kent's query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: PENDING_STATE -> RUNNING_STATE, statement: select * from src
2021-10-27 17:00:19.400 INFO operation.ExecuteStatement: Processing kent's query[26e169a2-6c06-450a-b758-e577ac673d70]: INITIALIZED_STATE -> PENDING_STATE, statement: select * from src
2021-10-27 17:00:19.401 INFO operation.ExecuteStatement: Processing kent's query[26e169a2-6c06-450a-b758-e577ac673d70]: PENDING_STATE -> RUNNING_STATE, statement: select * from src
2021-10-27 17:00:19.402 INFO operation.ExecuteStatement:
           Spark application name: kyuubi_USER_kent_6d4b5e53-ddd2-420c-b04f-326fb2b17e18
                 application ID: local-1635318669122
                 application web UI: http://10.242.189.214:50250
                 master: local[*]
                 deploy mode: client
                 version: 3.2.0
           Start time: 2021-10-27T15:11:08.416
           User: kent
2021-10-27 17:00:19.408 INFO metastore.HiveMetaStore: 6: get_database: default
2021-10-27 17:00:19.408 INFO HiveMetaStore.audit: ugi=kent	ip=unknown-ip-addr	cmd=get_database: default
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.internal.ss.authz.settings.applied.marker does not exist
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.stats.jdbc.timeout does not exist
2021-10-27 17:00:19.424 WARN conf.HiveConf: HiveConf of name hive.stats.retries.wait does not exist
2021-10-27 17:00:19.424 INFO metastore.HiveMetaStore: 6: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore
2021-10-27 17:00:19.425 INFO metastore.ObjectStore: ObjectStore, initialize called
2021-10-27 17:00:19.430 INFO metastore.MetaStoreDirectSql: Using direct SQL, underlying DB is DERBY
2021-10-27 17:00:19.431 INFO metastore.ObjectStore: Initialized ObjectStore
2021-10-27 17:00:19.434 INFO metastore.HiveMetaStore: 6: get_table : db=default tbl=src
2021-10-27 17:00:19.434 INFO HiveMetaStore.audit: ugi=kent	ip=unknown-ip-addr	cmd=get_table : db=default tbl=src
2021-10-27 17:00:19.449 INFO metastore.HiveMetaStore: 6: get_table : db=default tbl=src
2021-10-27 17:00:19.450 INFO HiveMetaStore.audit: ugi=kent	ip=unknown-ip-addr	cmd=get_table : db=default tbl=src
2021-10-27 17:00:19.510 INFO operation.ExecuteStatement: Processing kent's query[26e169a2-6c06-450a-b758-e577ac673d70]: RUNNING_STATE -> RUNNING_STATE, statement: select * from src
2021-10-27 17:00:19.544 INFO memory.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 343.6 KiB, free 408.6 MiB)
2021-10-27 17:00:19.558 INFO memory.MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 33.5 KiB, free 408.5 MiB)
2021-10-27 17:00:19.559 INFO spark.SparkContext: Created broadcast 5 from
2021-10-27 17:00:19.600 INFO mapred.FileInputFormat: Total input files to process : 1
2021-10-27 17:00:19.627 INFO spark.SparkContext: Starting job: collect at ExecuteStatement.scala:97
2021-10-27 17:00:19.629 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-b758-e577ac673d70]: Job 5 started with 1 stages, 1 active jobs running
2021-10-27 17:00:19.631 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-b758-e577ac673d70]: Stage 5 started with 1 tasks, 1 active stages running
2021-10-27 17:00:19.713 INFO kyuubi.SQLOperationListener: Finished stage: Stage(5, 0); Name: 'collect at ExecuteStatement.scala:97'; Status: succeeded; numTasks: 1; Took: 83 msec
2021-10-27 17:00:19.713 INFO scheduler.DAGScheduler: Job 5 finished: collect at ExecuteStatement.scala:97, took 0.085454 s
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: task runtime:(count: 1, mean: 78.000000, stdev: 0.000000, max: 78.000000, min: 78.000000)
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.713 INFO scheduler.StatsReportListener: 	78.0 ms	78.0 ms	78.0 ms	78.0 ms	78.0 ms	78.0 ms	78.0 ms	78.0 ms	78.0 ms
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: shuffle bytes written:(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: fetch wait time:(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.714 INFO scheduler.StatsReportListener: 	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: remote bytes read:(count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: task result size:(count: 1, mean: 1471.000000, stdev: 0.000000, max: 1471.000000, min: 1471.000000)
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.715 INFO scheduler.StatsReportListener: 	1471.0 B	1471.0 B	1471.0 B	1471.0 B	1471.0 B	1471.0 B	1471.0 B	1471.0 B	1471.0 B
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: executor (non-fetch) time pct: (count: 1, mean: 61.538462, stdev: 0.000000, max: 61.538462, min: 61.538462)
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.717 INFO scheduler.StatsReportListener: 	62 %	62 %	62 %	62 %	62 %	62 %	62 %	62 %	62 %
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: fetch wait time pct: (count: 1, mean: 0.000000, stdev: 0.000000, max: 0.000000, min: 0.000000)
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 	 0 %	 0 %	 0 %	 0 %	 0 %	 0 %	 0 %	 0 %	 0 %
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: other time pct: (count: 1, mean: 38.461538, stdev: 0.000000, max: 38.461538, min: 38.461538)
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 	0%	5%	10%	25%	50%	75%	90%	95%	100%
2021-10-27 17:00:19.718 INFO scheduler.StatsReportListener: 	38 %	38 %	38 %	38 %	38 %	38 %	38 %	38 %	38 %
2021-10-27 17:00:19.719 INFO kyuubi.SQLOperationListener: Query [26e169a2-6c06-450a-b758-e577ac673d70]: Job 5 succeeded, 0 active jobs running
2021-10-27 17:00:19.728 INFO codegen.CodeGenerator: Code generated in 12.277091 ms
2021-10-27 17:00:19.729 INFO operation.ExecuteStatement: Processing kent's query[26e169a2-6c06-450a-b758-e577ac673d70]: RUNNING_STATE -> FINISHED_STATE, statement: select * from src, time taken: 0.328 seconds
2021-10-27 17:00:19.731 INFO operation.ExecuteStatement: Query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597] in FINISHED_STATE
2021-10-27 17:00:19.731 INFO operation.ExecuteStatement: Processing kent's query[fb5f57d2-2b50-4a46-961b-3a5c6a2d2597]: RUNNING_STATE -> FINISHED_STATE, statement: select * from src, time taken: 0.33 seconds
+-------------------------------------------------+--------------------+
|                    version()                    | DATE '2021-10-27'  |
+-------------------------------------------------+--------------------+
| 3.2.0 5d45a415f3a29898d92380380cfd82bfc7f579ea  | 2021-10-27         |
+-------------------------------------------------+--------------------+
1 row selected (0.341 seconds)







1.5. Further Readings


	Monitoring Kyuubi - Events System


	Monitoring Kyuubi - Server Metrics


	Trouble Shooting


	Spark Online Documentation


	Monitoring and Instrumentation [https://spark.apache.org/docs/latest/monitoring.html]












            

          

      

      

    

  

  
    
    

    2. Monitoring Kyuubi - Server Metrics
    

    

    

    

    
 
  

    
      
          
            
  
2. Monitoring Kyuubi - Server Metrics

Kyuubi has a configurable metrics system based on the Dropwizard Metrics Library [https://metrics.dropwizard.io/].
This allows users to report Kyuubi metrics to a variety of kyuubi.metrics.reporters.
The metrics provide instrumentation for specific activities and Kyuubi server.


2.1. Configurations

The metrics system is configured via $KYUUBI_HOME/conf/kyuubi-defaults.conf.




	Key
	Default
	Meaning
	Type
	Since





	kyuubi.metrics.enabled
	true

	Set to true to enable kyuubi metrics system

	boolean

	1.2.0




	kyuubi.metrics.reporters
	JSON

	A comma-separated list for all metrics reporters 	CONSOLE - ConsoleReporter which outputs measurements to CONSOLE periodically.
 	JMX - JmxReporter which listens for new metrics and exposes them as MBeans.
  	JSON - JsonReporter which outputs measurements to json file periodically.
 	PROMETHEUS - PrometheusReporter which exposes metrics in Prometheus format.
 	SLF4J - Slf4jReporter which outputs measurements to system log periodically.



	seq

	1.2.0




	kyuubi.metrics.console.interval
	PT5S

	How often should report metrics to console

	duration

	1.2.0




	kyuubi.metrics.json.interval
	PT5S

	How often should report metrics to JSON file

	duration

	1.2.0




	kyuubi.metrics.json.location
	metrics

	Where the JSON metrics file located

	string

	1.2.0




	kyuubi.metrics.prometheus.path
	/metrics

	URI context path of prometheus metrics HTTP server

	string

	1.2.0




	kyuubi.metrics.prometheus.port
	10019

	Prometheus metrics HTTP server port

	int

	1.2.0




	kyuubi.metrics.slf4j.interval
	PT5S

	How often should report metrics to SLF4J logger

	duration

	1.2.0







2.2. Metrics

These metrics include:




	Metrics Prefix
	Metrics Suffix
	Type
	Since
	Description





	kyuubi.exec.pool.threads.alive
	
	gauge
	1.2.0
	 threads keepAlive in the backend executive thread pool




	kyuubi.exec.pool.threads.active
	
	gauge
	1.2.0
	 threads active in the backend executive thread pool




	kyuubi.exec.pool.work_queue.size
	
	gauge
	1.7.0
	 work queue size in the backend executive thread pool




	kyuubi.connection.total
	
	counter
	1.2.0
	  cumulative connection count




	kyuubi.connection.total
	${sessionType}
	counter
	1.7.0
	 cumulative connection count with session type ${sessionType}




	kyuubi.connection.opened
	
	gauge
	1.2.0
	 current active connection count




	kyuubi.connection.opened
	${user}
	counter
	1.2.0
	 current active connections count requested by a ${user}




	kyuubi.connection.opened
	${user}
  
    
    

    3. Trouble Shooting
    

    

    

    

    
 
  

    
      
          
            
  
3. Trouble Shooting


3.1. Common Issues


3.1.1. java.lang.UnsupportedClassVersionError .. Unsupported major.minor version 52.0

Exception in thread "main" java.lang.UnsupportedClassVersionError: org/apache/kyuubi/server/KyuubiServer : Unsupported major.minor version 52.0
	at java.lang.ClassLoader.defineClass1(Native Method)
	at java.lang.ClassLoader.defineClass(ClassLoader.java:803)
	at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
	at java.net.URLClassLoader.defineClass(URLClassLoader.java:442)
	at java.net.URLClassLoader.access$100(URLClassLoader.java:64)
	at java.net.URLClassLoader$1.run(URLClassLoader.java:354)
	at java.net.URLClassLoader$1.run(URLClassLoader.java:348)
	at java.security.AccessController.doPrivileged(Native Method)
	at java.net.URLClassLoader.findClass(URLClassLoader.java:347)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
	at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:312)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
	at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:482)





Firstly, you should check the version of Java JRE used to run Kyuubi is actually matched with the version of Java compiler used to build Kyuubi.

$ java -version
java version "1.7.0_171"
OpenJDK Runtime Environment (rhel-2.6.13.2.el7-x86_64 u171-b01)
OpenJDK 64-Bit Server VM (build 24.171-b01, mixed mode)





$ cat RELEASE
Kyuubi 1.0.0-SNAPSHOT (git revision 39e5da5) built for
Java 1.8.0_251
Scala 2.12
Spark 3.0.1
Hadoop 2.7.4
Hive 2.3.7
Build flags:





To fix this problem you should export JAVA_HOME with a compatible one in conf/kyuubi-env.sh

echo "export JAVA_HOME=/path/to/jdk1.8.0_251" >> conf/kyuubi-env.sh







3.1.2. org.apache.spark.SparkException: When running with master ‘yarn’ either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment

Exception in thread "main" org.apache.spark.SparkException: When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.
	at org.apache.spark.deploy.SparkSubmitArguments.error(SparkSubmitArguments.scala:630)
	at org.apache.spark.deploy.SparkSubmitArguments.validateSubmitArguments(SparkSubmitArguments.scala:270)
	at org.apache.spark.deploy.SparkSubmitArguments.validateArguments(SparkSubmitArguments.scala:233)
	at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:119)
	at org.apache.spark.deploy.SparkSubmit$$anon$2$$anon$3.<init>(SparkSubmit.scala:990)
	at org.apache.spark.deploy.SparkSubmit$$anon$2.parseArguments(SparkSubmit.scala:990)
	at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:85)
	at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007)
	at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
	at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)





When Kyuubi gets the spark.master=yarn, HADOOP_CONF_DIR should also be exported in $KYUUBI_HOME/conf/kyuubi-env.sh.

To fix this problem you should export HADOOP_CONF_DIR to the folder that contains the hadoop client settings in conf/kyuubi-env.sh.

echo "export HADOOP_CONF_DIR=/path/to/hadoop/conf" >> conf/kyuubi-env.sh







3.1.3. javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism level: Failed to find any Kerberos tgt)];



3.1.4. org.apache.hadoop.security.AccessControlException: Permission denied: user=hzyanqin, access=WRITE, inode=”/user”:hdfs:hdfs:drwxr-xr-x

org.apache.hadoop.security.AccessControlException: Permission denied: user=hzyanqin, access=WRITE, inode="/user":hdfs:hdfs:drwxr-xr-x
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:350)
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:251)
	at org.apache.ranger.authorization.hadoop.RangerHdfsAuthorizer$RangerAccessControlEnforcer.checkPermission(RangerHdfsAuthorizer.java:306)
	at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
	at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1767)
	at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1751)
	at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1710)
	at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:60)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:3062)
	at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1156)
	at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:652)
	at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
	at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:503)
	at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
	at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:871)
	at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:817)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1893)
	at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2606)

	at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
	at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
	at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
	at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
	at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106)
	at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:73)
	at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3007)
	at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2975)
	at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1047)
	at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1043)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirsInternal(DistributedFileSystem.java:1061)
	at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.java:1036)
	at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:1881)
	at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:600)
	at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:441)
	at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:876)
	at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:196)
	at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:60)
	at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:201)
	at org.apache.spark.SparkContext.<init>(SparkContext.scala:555)
	at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2574)
	at org.apache.spark.sql.SparkSession$Builder.$anonfun$getOrCreate$2(SparkSession.scala:934)
	at scala.Option.getOrElse(Option.scala:189)
	at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:928)
	at org.apache.kyuubi.engine.spark.SparkSQLEngine$.createSpark(SparkSQLEngine.scala:72)
	at org.apache.kyuubi.engine.spark.SparkSQLEngine$.main(SparkSQLEngine.scala:101)
	at org.apache.kyuubi.engine.spark.SparkSQLEngine.main(SparkSQLEngine.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
	at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:928)
	at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:165)
	at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:163)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1746)
	at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:163)
	at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
	at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
	at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007)
	at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
	at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)





The user do not have permission to create to Hadoop home dir, which is /user/hzyanqin in the case above.

To fix this problem you need to create this directory first and grant ACL permission for hzyanqin.



3.1.5. org.apache.thrift.TApplicationException: Invalid method name: ‘get_table_req’

Caused by: org.apache.thrift.TApplicationException: Invalid method name: 'get_table_req'
	at org.apache.thrift.TServiceClient.receiveBase(TServiceClient.java:79)
	at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.recv_get_table_req(ThriftHiveMetastore.java:1567)
	at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.get_table_req(ThriftHiveMetastore.java:1554)
	at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.getTable(HiveMetaStoreClient.java:1350)
	at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.getTable(SessionHiveMetaStoreClient.java:127)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.invoke(RetryingMetaStoreClient.java:173)
	at com.sun.proxy.$Proxy37.getTable(Unknown Source)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.apache.hadoop.hive.metastore.HiveMetaStoreClient$SynchronizedHandler.invoke(HiveMetaStoreClient.java:2336)
	at com.sun.proxy.$Proxy37.getTable(Unknown Source)
	at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1274)
	... 93 more





This error means that you are using incompatible version of Hive metastore client to connect the Hive metastore server.

To fix this problem you could use a compatible version of Hive client by configuring
spark.sql.hive.metastore.jars and spark.sql.hive.metastore.version at Spark side.



3.1.6. hive.server2.thrift.max.worker.threads

Unexpected end of file when reading from HS2 server. The root cause might be too many concurrent connections. Please ask the administrator to check the number of active connections, and adjust hive.server2.thrift.max.worker.threads if applicable.
Error: org.apache.thrift.transport.TTransportException (state=08S01,code=0)





In Kyuubi, we should increase kyuubi.frontend.min.worker.threads instead of hive.server2.thrift.max.worker.threads



3.1.7. Failed to create function using jar

CREATE TEMPORARY FUNCTION TEST AS 'com.netease.UDFTest' using jar 'hdfs:///tmp/udf.jar'

Error operating EXECUTE_STATEMENT: org.apache.spark.sql.AnalysisException: Can not load class 'com.netease.UDFTest' when registering the function 'test', please make sure it is on the classpath;
	at org.apache.spark.sql.catalyst.catalog.SessionCatalog.$anonfun$registerFunction$1(SessionCatalog.scala:1336)
	at scala.Option.getOrElse(Option.scala:189)
	at org.apache.spark.sql.catalyst.catalog.SessionCatalog.registerFunction(SessionCatalog.scala:1333)
	at org.apache.spark.sql.execution.command.CreateFunctionCommand.run(functions.scala:82)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
	at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:79)
	at org.apache.spark.sql.Dataset.$anonfun$logicalPlan$1(Dataset.scala:229)
	at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3618)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
	at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616)
	at org.apache.spark.sql.Dataset.<init>(Dataset.scala:229)
	at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
	at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
	at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:607)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
	at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:602)
	at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.org$apache$kyuubi$engine$spark$operation$ExecuteStatement$$executeStatement(ExecuteStatement.scala:64)
	at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:80)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
	at java.lang.Thread.run(Thread.java:745)





If you get this exception when creating a function, you can check your JDK version.
You should update JDK to JDK1.8.0_121 and later, since JDK1.8.0_121 fix a security issue Additional access restrictions for URLClassLoader.newInstance [https://www.oracle.com/java/technologies/javase/8u121-relnotes.html].



3.1.8. Failed to start Spark 3.1 with error msg ‘Cannot modify the value of a Spark config’

Here is the error message

Caused by: org.apache.spark.sql.AnalysisException: Cannot modify the value of a Spark config: spark.yarn.queue
	at org.apache.spark.sql.RuntimeConfig.requireNonStaticConf(RuntimeConfig.scala:156)
	at org.apache.spark.sql.RuntimeConfig.set(RuntimeConfig.scala:40)
	at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.$anonfun$openSession$2(SparkSQLSessionManager.scala:68)
	at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.$anonfun$openSession$2$adapted(SparkSQLSessionManager.scala:56)
	at scala.collection.immutable.Map$Map4.foreach(Map.scala:236)
	at org.apache.kyuubi.engine.spark.session.SparkSQLSessionManager.openSession(SparkSQLSessionManager.scala:56)
	... 12 more





This is because Spark-3.1 will check the config which you set and throw exception if the config is static or used in other module (e.g. yarn/core).

You can add a config spark.sql.legacy.setCommandRejectsSparkCoreConfs=false in spark-defaults.conf to disable this behavior.






            

          

      

      

    

  

  
    
    

    Tools
    

    

    

    

    
 
  

    
      
          
            
  
Tools



	Kubernetes Tools Spark Block Cleaner
	Requirements

	Scenes

	Principle

	Usage

	Related parameters





	Administrator CLI
	Usage

	Manage kyuubi servers

	Manage kyuubi engines





	Kyuubi Administer Tool
	Installation

	Usage

	Refresh config

	List Engines

	List Servers

	Delete an Engine












            

          

      

      

    

  

  
    
    

    Kubernetes Tools Spark Block Cleaner
    

    

    

    

    
 
  

    
      
          
            
  
Kubernetes Tools Spark Block Cleaner


Requirements

You’d better have cognition upon the following things when you want to use spark-block-cleaner.


	Read this article


	An active Kubernetes cluster


	Kubectl [https://kubernetes.io/docs/reference/kubectl/overview/]


	Docker [https://www.docker.com/]






Scenes

When you’re using Spark On Kubernetes with Client mode and don’t use emptyDir for Spark local-dir type, you may face the same scenario that executor pods deleted without clean all the Block files. It may cause disk overflow.

Therefore, we chose to use Spark Block Cleaner to clear the block files accumulated by Spark.



Principle

When deploying Spark Block Cleaner, we will configure volumes for the destination folder. Spark Block Cleaner will perceive the folder by the parameter CACHE_DIRS.

Spark Block Cleaner will clear the perceived folder in a fixed loop(which can be configured by SCHEDULE_INTERVAL). And Spark Block Cleaner will select folder start with blockmgr and spark for deletion using the logic Spark uses to create those folders.

Before deleting those files, Spark Block Cleaner will determine whether it is a recently modified file(depending on whether the file has not been acted on within the specified time which configured by FILE_EXPIRED_TIME). Only delete files those beyond that time interval.

And Spark Block Cleaner will check the disk utilization after clean, if the remaining space is less than the specified value(control by FREE_SPACE_THRESHOLD), will trigger deep clean(which file expired time control by DEEP_CLEAN_FILE_EXPIRED_TIME).



Usage

Before you start using Spark Block Cleaner, you should build its docker images.


Build Block Cleaner Docker Image

In the KYUUBI_HOME directory, you can use the following cmd to build docker image.

docker build ./tools/spark-block-cleaner/kubernetes/docker







Modify spark-block-cleaner.yml

You need to modify the ${KYUUBI_HOME}/tools/spark-block-cleaner/kubernetes/spark-block-cleaner.yml to fit your current environment.

In Kyuubi tools, we recommend using DaemonSet to start, and we offer default yaml file in daemonSet way.

Base file structure:

apiVersion
kind
metadata
  name
  namespace
spec
  select
  template
    metadata
    spce
      containers
      - image
      - volumeMounts
      - env
    volumes





You can use affect the performance of Spark Block Cleaner through configure parameters in containers env part of spark-block-cleaner.yml.

env:
  - name: CACHE_DIRS
    value: /data/data1,/data/data2
  - name: FILE_EXPIRED_TIME
    value: 604800
  - name: DEEP_CLEAN_FILE_EXPIRED_TIME
    value: 432000
  - name: FREE_SPACE_THRESHOLD
    value: 60
  - name: SCHEDULE_INTERVAL
    value: 3600





The most important thing, configure volumeMounts and volumes corresponding to Spark local-dirs.

For example, Spark use /spark/shuffle1 as local-dir, you can configure like:

volumes:
  - name: block-files-dir-1
    hostPath:
      path: /spark/shuffle1





volumeMounts:
  - name: block-files-dir-1
    mountPath: /data/data1





env:
  - name: CACHE_DIRS
    value: /data/data1







Start daemonSet

After you finishing modifying the above, you can use the following command kubectl apply -f ${KYUUBI_HOME}/tools/spark-block-cleaner/kubernetes/spark-block-cleaner.yml to start daemonSet.




Related parameters




	Name
	Default
	unit
	Meaning





	CACHE_DIRS
	/data/data1,/data/data2
	
	The target dirs in container path which will clean block files.



	FILE_EXPIRED_TIME
	604800
	seconds
	Cleaner will clean the block files which current time - last modified time more than the fileExpiredTime.



	DEEP_CLEAN_FILE_EXPIRED_TIME
	432000
	seconds
	Deep clean will clean the block files which current time - last modified time more than the deepCleanFileExpiredTime.



	FREE_SPACE_THRESHOLD
	60
	%
	After first clean, if free Space low than threshold trigger deep clean.



	SCHEDULE_INTERVAL
	3600
	seconds
	Cleaner sleep between cleaning.








            

          

      

      

    

  

  
    
    

    Administrator CLI
    

    

    

    

    
 
  

    
      
          
            
  
Administrator CLI


Usage

bin/kyuubi-ctl --help





Output

kyuubi 1.8.0
Usage: kyuubi-ctl [create|get|delete|list] [options]

  -zk, --zk-quorum <value>
                           The connection string for the zookeeper ensemble, using zk quorum manually.
  -n, --namespace <value>  The namespace, using kyuubi-defaults/conf if absent.
  -s, --host <value>       Hostname or IP address of a service.
  -p, --port <value>       Listening port of a service.
  -v, --version <value>    Using the compiled KYUUBI_VERSION default, change it if the active service is running in another.
  -b, --verbose            Print additional debug output.

Command: create [server]

Command: create server
        Expose Kyuubi server instance to another domain.

Command: get [server|engine] [options]
        Get the service/engine node info, host and port needed.
Command: get server
        Get Kyuubi server info of domain
Command: get engine
        Get Kyuubi engine info belong to a user.
  -u, --user <value>       The user name this engine belong to.
  -et, --engine-type <value>
                           The engine type this engine belong to.
  -es, --engine-subdomain <value>
                           The engine subdomain this engine belong to.
  -esl, --engine-share-level <value>
                           The engine share level this engine belong to.

Command: delete [server|engine] [options]
        Delete the specified service/engine node, host and port needed.
Command: delete server
        Delete the specified service node for a domain
Command: delete engine
        Delete the specified engine node for user.
  -u, --user <value>       The user name this engine belong to.
  -et, --engine-type <value>
                           The engine type this engine belong to.
  -es, --engine-subdomain <value>
                           The engine subdomain this engine belong to.
  -esl, --engine-share-level <value>
                           The engine share level this engine belong to.

Command: list [server|engine] [options]
        List all the service/engine nodes for a particular domain.
Command: list server
        List all the service nodes for a particular domain
Command: list engine
        List all the engine nodes for a user
  -u, --user <value>       The user name this engine belong to.
  -et, --engine-type <value>
                           The engine type this engine belong to.
  -es, --engine-subdomain <value>
                           The engine subdomain this engine belong to.
  -esl, --engine-share-level <value>
                           The engine share level this engine belong to.

  -h, --help               Show help message and exit.



Manage kyuubi servers

You can specify the zookeeper address(--zk-quorum) and namespace(--namespace), version(--version) parameters to query a specific kyuubi server cluster.


List server

List all the service nodes for a particular domain.

bin/kyuubi-ctl list server







Create server

Expose Kyuubi server instance to another domain.

First read kyuubi.ha.zookeeper.namespace in conf/kyuubi-defaults.conf, if there are server instances under this namespace, register them in the new namespace specified by the --namespace parameter.

bin/kyuubi-ctl create server --namespace XXX







Get server

Get Kyuubi server info of domain.

bin/kyuubi-ctl get server --host XXX --port YYY







Delete server

Delete the specified service node for a domain.

After the server node is deleted, the kyuubi server stops opening new sessions and waits for all currently open sessions to be closed before the process exits.

bin/kyuubi-ctl delete server --host XXX --port YYY








Manage kyuubi engines

You can also specify the engine type(--engine-type), engine share level subdomain(--engine-subdomain) and engine share level(--engine-share-level).

If not specified, the configuration item kyuubi.engine.type of kyuubi-defaults.conf read, the default value is SPARK_SQL, kyuubi.engine.share.level.subdomain, the default value is default, kyuubi.engine.share.level, the default value is USER.

If the engine pool mode is enabled through kyuubi.engine.pool.size, the subdomain consists of kyuubi.engine.pool.name and a number below size, e.g. engine-pool-0 .

--engine-share-level supports the following enum values.


	CONNECTION




The engine Ref Id (UUID) must be specified via --engine-subdomain.


	USER:




Default Value.


	GROUP:




The --user parameter is the group name corresponding to the user.


	SERVER:




The --user parameter is the user who started the kyuubi server.


List engine

List all the engine nodes for a user.

bin/kyuubi-ctl list engine --user AAA





The management share level is SERVER, the user who starts the kyuubi server is A, the engine is TRINO, and the subdomain is adhoc.

bin/kyuubi-ctl list engine --user A --engine-type TRINO --engine-subdomain adhoc --engine-share-level SERVER







Get engine

Get Kyuubi engine info belong to a user.

bin/kyuubi-ctl get engine --user AAA --host XXX --port YYY







Delete engine

Delete the specified engine node for user.

After the engine node is deleted, the kyuubi engine stops opening new sessions and waits for all currently open sessions to be closed before the process exits.

bin/kyuubi-ctl delete engine --user AAA --host XXX --port YYY










            

          

      

      

    

  

  
    
    

    Kyuubi Administer Tool
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Administer Tool


New in version 1.6.0.



Kyuubi administer tool(kyuubi-admin) provides administrators with some maintenance operations against a kyuubi server or cluster.


Installation

To install kyuubi-admin, you need to unpack the tarball. For example,

tar zxf apache-kyuubi-1.8.0-bin.tgz

This will result in the creation of a subdirectory named apache-kyuubi-1.8.0-bin shown below,

apache-kyuubi-1.8.0-bin
├── ...
├── bin
|   ├── kyuubi-admin
│   ├── ...
├── ...



Usage

bin/kyuubi-admin --help







Refresh config

Refresh the config with specified type.

Usage: bin/kyuubi-admin refresh config [options] [<configType>]







	Config Type

	Description





	hadoopConf

	The hadoop conf used for proxy user verification.



	userDefaultsConf

	The user defaults configs with key in format in the form of ___{username}___.{config key} from default property file.



	unlimitedUsers

	The users without maximum connections limitation.



	denyUsers

	The user in the deny list will be denied to connect to kyuubi server.








List Engines

Prints a table of the key information about the specified engines.

Usage: bin/kyuubi-admin list engine [options]







	Options

	Description





	-et, –engine-type

	The engine type. If not specified, it will read the configuration item kyuubi.engine.type from kyuubi-defaults.conf.



	-esl, –engine-share-level

	The engine share level. If not specified, it will read the configuration item kyuubi.engine.share.level from kyuubi-defaults.conf.



	-es, –engine-subdomain

	The subdomain for the share level of an engine. If not specified, it will read the configuration item kyuubi.engine.share.level.subdomain from kyuubi-defaults.conf.



	–hs2ProxyUser

	The proxy user to impersonate. When specified, it will list engines for the hs2ProxyUser.



	-a –all

	All the engine.








List Servers

Prints a table of the key information about the servers.

Usage: bin/kyuubi-admin list server



Delete an Engine

Delete the specified engine.

Usage: bin/kyuubi-admin delete engine [options]







	Options

	Description





	-et, –engine-type

	The engine type. If not specified, it will read the configuration item kyuubi.engine.type from kyuubi-defaults.conf.



	-esl, –engine-share-level

	The engine share level. If not specified, it will read the configuration item kyuubi.engine.share.level from kyuubi-defaults.conf.



	-es, –engine-subdomain

	The subdomain for the share level of an engine. If not specified, it will read the configuration item kyuubi.engine.share.level.subdomain from kyuubi-defaults.conf. Default value is “default”.



	–hs2ProxyUser

	The proxy user to impersonate. When specified, it will delete engines for the hs2ProxyUser.










            

          

      

      

    

  

  
    
    

    Clients
    

    

    

    

    
 
  

    
      
          
            
  
Clients

This section aims to document the APIs, clients and tools for end-users who are not necessary to care about deployment at the kyuubi server side.

Kyuubi provides standards-based drivers for JDBC, and ODBC enabling developers to build database applications in their language of choice.

In addition, APIs like REST, Thrift, etc., allow developers to access kyuubi directly and flexibly.


Note

When you try some of the examples in this section, make sure you have a available server.





	JDBC Drivers
	Kyuubi Hive JDBC Driver

	Hive JDBC Driver

	MySQL Connectors

	Trino JDBC Driver





	Command Line Interface(CLI)s
	Kyuubi Beeline

	Hive Beeline

	Trino command line interface





	Business Intelligence Tools and SQL IDEs
	Apache Superset

	Cloudera Hue

	DataGrip

	DBeaver

	PowerBI

	Tableau





	ODBC Drivers




	Thrift APIs




	RESTful APIs and Clients
	REST API v1





	Web UI




	Python
	PyHive

	PySpark

	Python-JayDeBeApi





	Client Commons
	Client Configuration Guide

	Logging

	Configure Kerberos for clients to Access Kerberized Kyuubi

	Advanced Features












            

          

      

      

    

  

  
    
    

    JDBC Drivers
    

    

    

    

    
 
  

    
      
          
            
  
JDBC Drivers



	Kyuubi Hive JDBC Driver

	Hive JDBC Driver

	MySQL Connectors

	Trino JDBC Driver








            

          

      

      

    

  

  
    
    

    Kyuubi Hive JDBC Driver
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Hive JDBC Driver


New in version 1.4.0: Kyuubi community maintains a forked Hive JDBC driver module and provides both shaded and non-shaded packages.



This packages aims to support some missing functionalities of the original Hive JDBC driver.
For Kyuubi engines that support multiple catalogs, it provides meta APIs for better support.
The behaviors of the original Hive JDBC driver have remained.

To access a Hive data warehouse or new Lakehouse formats, such as Apache Iceberg/Hudi, Delta Lake using the Kyuubi JDBC driver
for Apache kyuubi, you need to configure the following:


	The list of driver library files - Referencing the JDBC Driver Libraries.


	The Driver or DataSource class - Registering the Driver Class.


	The connection URL for the driver - Building the Connection URL





Referencing the JDBC Driver Libraries

Before you use the jdbc driver for Apache Kyuubi, the JDBC application or Java code that
you are using to connect to your data must be able to access the driver JAR files.


Using the Driver in Java Code

In the code, specify the artifact kyuubi-hive-jdbc-shaded from Maven Central [https://mvnrepository.com/artifact/org.apache.kyuubi/kyuubi-hive-jdbc-shaded] according to the build tool you use.


Maven

<dependency>
    <groupId>org.apache.kyuubi</groupId>
    <artifactId>kyuubi-hive-jdbc-shaded</artifactId>
    <version>1.8.0</version>
</dependency>



sbt

libraryDependencies += "org.apache.kyuubi" % "kyuubi-hive-jdbc-shaded" % "1.8.0"



Gradle

implementation group: 'org.apache.kyuubi', name: 'kyuubi-hive-jdbc-shaded', version: '1.8.0'




Using the Driver in a JDBC Application

For JDBC Applications, such as BI tools, SQL IDEs, please check the specific guide for detailed information.


Note

Is your favorite tool missing?
Report an feature request [https://kyuubi.apache.org/issue_tracking.html] or help us document it.






Registering the Driver Class

Before connecting to your data, you must register the JDBC Driver class for your application.


	org.apache.kyuubi.jdbc.KyuubiHiveDriver


	org.apache.kyuubi.jdbc.KyuubiDriver (Deprecated)




The following sample code shows how to use the java.sql.DriverManager [https://docs.oracle.com/javase/8/docs/api/java/sql/DriverManager.html] class to establish a
connection for JDBC:

private static Connection newKyuubiConnection() throws Exception {
  Connection connection = DriverManager.getConnection(CONNECTION_URL);
  return connection;
}







Building the Connection URL


Basic Connection URL format

Use the connection URL to supply connection information to the kyuubi server or cluster that you are
accessing. The following is the format of the connection URL for the Kyuubi Hive JDBC Driver

jdbc:subprotocol://host:port[/catalog]/[schema];<clientProperties;><[#|?]sessionProperties>






	subprotocol: kyuubi or hive2


	host: DNS or IP address of the kyuubi server


	port: The number of the TCP port that the server uses to listen for client requests


	catalog: Optional catalog name to set the current catalog to run the query against.


	schema: Optional database name to set the current database to run the query against, use default if absent.


	clientProperties: Optional semicolon(;) separated key=value parameters identified and affect the client behavior locally. e.g., user=foo;password=bar.


	sessionProperties: Optional semicolon(;) separated key=value parameters used to configure the session, operation or background engines.
For instance, kyuubi.engine.share.level=CONNECTION determines the background engine instance is used only by the current connection. spark.ui.enabled=false disables the Spark UI of the engine.





Important


	The sessionProperties MUST come after a leading number sign(#) or question mark (?).


	Properties are case-sensitive


	Do not duplicate properties in the connection URL








Connection URL over HTTP


New in version 1.6.0.



jdbc:subprotocol://host:port/schema;transportMode=http;httpPath=<http_endpoint>






	http_endpoint is the corresponding HTTP endpoint configured by kyuubi.frontend.thrift.http.path at the server side.






Connection URL over Service Discovery

jdbc:subprotocol://<zookeeper quorum>/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=kyuubi






	zookeeper quorum is the corresponding zookeeper cluster configured by kyuubi.ha.addresses at the server side.


	zooKeeperNamespace is  the corresponding namespace configured by kyuubi.ha.namespace at the server side.







Kerberos Authentication

Since 1.6.0, Kyuubi JDBC driver implements the Kerberos authentication based on JAAS framework instead of Hadoop UserGroupInformation [https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/security/UserGroupInformation.html],
which means it does not forcibly rely on Hadoop dependencies to connect a kerberized Kyuubi Server.

Kyuubi JDBC driver supports different approaches to connect a kerberized Kyuubi Server. First of all, please follow
the krb5.conf instruction [https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html] to setup krb5.conf properly.


Authentication by Principal and Keytab


New in version 1.6.0.




Tip

It’s the simplest way w/ minimal setup requirements for Kerberos authentication.



It’s straightforward to use principal and keytab for Kerberos authentication, just simply configure them in the JDBC URL.

jdbc:kyuubi://host:port/schema;kyuubiClientPrincipal=<clientPrincipal>;kyuubiClientKeytab=<clientKeytab>;kyuubiServerPrincipal=<serverPrincipal>






	kyuubiClientPrincipal: Kerberos principal for client authentication


	kyuubiClientKeytab: path of Kerberos keytab file for client authentication


	kyuubiServerPrincipal: Kerberos principal configured by kyuubi.kinit.principal at the server side. kyuubiServerPrincipal is available
as an alias of principal since 1.7.0, use principal for previous versions.






Authentication by Principal and TGT Cache

Another typical usage of Kerberos authentication is using kinit to generate the TGT cache first, then the application
does Kerberos authentication through the TGT cache.

jdbc:kyuubi://host:port/schema;kyuubiServerPrincipal=<serverPrincipal>







Authentication by Hadoop UserGroupInformation [https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/security/UserGroupInformation.html] doAs (programing only)


Tip

This approach allows project which already uses Hadoop UserGroupInformation [https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/security/UserGroupInformation.html] for Kerberos authentication to easily
connect the kerberized Kyuubi Server. This approach does not work between [1.6.0, 1.7.0], and got fixed in 1.7.1.



String jdbcUrl = "jdbc:kyuubi://host:port/schema;kyuubiServerPrincipal=<serverPrincipal>"
UserGroupInformation ugi = UserGroupInformation.loginUserFromKeytab(clientPrincipal, clientKeytab);
ugi.doAs((PrivilegedExceptionAction<String>) () -> {
  Connection conn = DriverManager.getConnection(jdbcUrl);
  ...
});







Authentication by Subject (programing only)

String jdbcUrl = "jdbc:kyuubi://host:port/schema;kyuubiServerPrincipal=<serverPrincipal>;kerberosAuthType=fromSubject"
Subject kerberizedSubject = ...;
Subject.doAs(kerberizedSubject, (PrivilegedExceptionAction<String>) () -> {
  Connection conn = DriverManager.getConnection(jdbcUrl);
  ...
});










            

          

      

      

    

  

  
    
    

    Hive JDBC Driver
    

    

    

    

    
 
  

    
      
          
            
  
Hive JDBC Driver


Instructions

Kyuubi is fully compatible with Hive JDBC and ODBC drivers that let you connect to popular Business Intelligence (BI)
tools to query, analyze and visualize data though Spark SQL engines.

It’s recommended to use Kyuubi JDBC driver for new applications.



Install Hive JDBC

For programing, the easiest way to get hive-jdbc is from the maven central [https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc]. For example,

The following sections demonstrate how to use Hive JDBC driver 2.3.8 to connect Kyuubi Server, actually, any version
less or equals 3.1.x should work fine.


	maven




<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-jdbc</artifactId>
    <version>2.3.8</version>
</dependency>






	sbt




libraryDependencies += "org.apache.hive" % "hive-jdbc" % "2.3.8"






	gradle




implementation group: 'org.apache.hive', name: 'hive-jdbc', version: '2.3.8'





For BI tools, please refer to Quick Start to check the guide for the BI tool used.
If you find there is no specific document for the BI tool that you are using, don’t worry, the configuration part for all BI tools are basically the same.
Also, we will appreciate if you can help us to improve the document.



JDBC URL

JDBC URLs have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionVars>?<kyuubiConfs>#<[spark|hive]Vars>








	JDBC Parameter
	Description





	host
	The cluster node hosting Kyuubi Server.



	port
	The port number to which is Kyuubi Server listening.



	dbName
	Optional database name to set the current database to run the query against, use default if absent.



	sessionVars
	Optional Semicolon(;) separated key=value parameters for the JDBC/ODBC driver. Such as user, password and hive.server2.proxy.user.



	kyuubiConfs
	Optional Semicolon(;) separated key=value parameters for Kyuubi server to create the corresponding engine, dismissed if engine exists.



	[spark|hive]Vars
	Optional Semicolon(;) separated key=value parameters for Spark/Hive variables used for variable substitution.






Example

jdbc:hive2://localhost:10009/default;hive.server2.proxy.user=proxy_user?kyuubi.engine.share.level=CONNECTION;spark.ui.enabled=false#var_x=y









            

          

      

      

    

  

  
    
    

    MySQL Connectors
    

    

    

    

    
 
  

    
      
          
            
  
MySQL Connectors [https://www.mysql.com/products/connector/]


New in version 1.4.0.



Kyuubi provides an frontend service that enables the connectivity and accessibility from MySQL connectors.


Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.






            

          

      

      

    

  

  
    
    

    Trino JDBC Driver
    

    

    

    

    
 
  

    
      
          
            
  
Trino JDBC Driver


Instructions

Kyuubi currently supports the Trino connection protocol, so we can use Trino-JDBC to connect to the kyuubi server
and submit SQL to Spark, Trino and other engines for execution.



Start Kyuubi Trino Server

First we should configure the trino protocol and the service port in the kyuubi.conf

kyuubi.frontend.protocols TRINO
kyuubi.frontend.trino.bind.port 10999 #default port







Install Trino JDBC

Download trino-jdbc-363.jar [https://repo1.maven.org/maven2/io/trino/trino-jdbc/363/trino-jdbc-363.jar] and add it to the classpath of your Java application.

The driver is also available from Maven Central:

<dependency>
    <groupId>io.trino</groupId>
    <artifactId>trino-jdbc</artifactId>
    <version>363</version>
</dependency>







JDBC URL

When your driver is loaded, registered and configured, you are ready to connect to Trino from your application. The following JDBC URL formats are supported:

jdbc:trino://host:port





Trino JDBC example

String trinoHost = "localhost";
String trinoPort = "10999";
String trinoUser = "default";
String trinoPassword = null;
Connection connection = null;
ResultSet rs = null;

try {
    // Create the connection using the JDBC URL
    connection = DriverManager.getConnection("jdbc:trino://" + trinoHost + ":" + trinoPort, trinoUser, trinoPassword);

    // Do whatever you need to do with the connection
    Statement stmt = connection.createStatement();
    rs = stmt.executeQuery("SELECT 1");

    while (rs.next()) {
    // retrieve data from the ResultSet
    }

} catch (Exception e) {
    e.printStackTrace();
} finally {
    try {
        // Close the connection when you're done with it
        if (rs != null) rs.close();
        if (connection != null) connection.close();
    } catch (Exception e) {
        e.printStackTrace();
    }
} 





The configuration of the connection parameters can be found in the official trino documentation at: https://trino.io/docs/current/client/jdbc.html#connection-parameters





            

          

      

      

    

  

  
    
    

    Command Line Interface(CLI)s
    

    

    

    

    
 
  

    
      
          
            
  
Command Line Interface(CLI)s



	Kyuubi Beeline

	Hive Beeline
	Prerequisites





	Trino command line interface
	Start Kyuubi Trino Server

	Install

	Running the CLI












            

          

      

      

    

  

  
    
    

    Kyuubi Beeline
    

    

    

    

    
 
  

    
      
          
            
  
Kyuubi Beeline


Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.






            

          

      

      

    

  

  
    
    

    Hive Beeline
    

    

    

    

    
 
  

    
      
          
            
  
Hive Beeline

Kyuubi supports Apache Hive beeline that works with Kyuubi server.
Hive beeline is a SQLLine CLI [https://sqlline.sourceforge.net/] based on the Hive JDBC Driver.


Prerequisites


	Kyuubi server installed and launched.


	Hive beeline installed





Important

Kyuubi does not support embedded mode which beeline and server run in the same process.
It always uses remote mode for connecting beeline with a separate server process over thrift.




Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.







            

          

      

      

    

  

  
    
    

    Trino command line interface
    

    

    

    

    
 
  

    
      
          
            
  
Trino command line interface

The Trino CLI provides a terminal-based, interactive shell for running queries. We can use it to connect Kyuubi server now.


Start Kyuubi Trino Server

First we should configure the trino protocol and the service port in the kyuubi.conf

kyuubi.frontend.protocols TRINO
kyuubi.frontend.trino.bind.port 10999 #default port







Install

Download trino-cli-363-executable.jar [https://repo1.maven.org/maven2/io/trino/trino-jdbc/363/trino-jdbc-363.jar], rename it to trino, make it executable with chmod +x, and run it to show the version of the CLI:

wget https://repo1.maven.org/maven2/io/trino/trino-jdbc/363/trino-jdbc-363.jar
mv trino-jdbc-363.jar trino
chmod +x trino
./trino --version







Running the CLI

The minimal command to start the CLI in interactive mode specifies the URL of the kyuubi server with the Trino protocol:

./trino --server http://localhost:10999





If successful, you will get a prompt to execute commands. Use the help command to see a list of supported commands. Use the clear command to clear the terminal. To stop and exit the CLI, run exit or quit.:

trino> help

Supported commands:
QUIT
EXIT
CLEAR
EXPLAIN [ ( option [, ...] ) ] <query>
    options: FORMAT { TEXT | GRAPHVIZ | JSON }
             TYPE { LOGICAL | DISTRIBUTED | VALIDATE | IO }
DESCRIBE <table>
SHOW COLUMNS FROM <table>
SHOW FUNCTIONS
SHOW CATALOGS [LIKE <pattern>]
SHOW SCHEMAS [FROM <catalog>] [LIKE <pattern>]
SHOW TABLES [FROM <schema>] [LIKE <pattern>]
USE [<catalog>.]<schema>





You can now run SQL statements. After processing, the CLI will show results and statistics.

trino> select 1;
 _col0
-------
     1
(1 row)

Query 20230216_125233_00806_examine_6hxus, FINISHED, 1 node
Splits: 1 total, 1 done (100.00%)
0.29 [0 rows, 0B] [0 rows/s, 0B/s]

trino>





Many other options are available to further configure the CLI in interactive mode to
refer https://trino.io/docs/current/client/cli.html#running-the-cli





            

          

      

      

    

  

  
    
    

    Business Intelligence Tools and SQL IDEs
    

    

    

    

    
 
  

    
      
          
            
  
Business Intelligence Tools and SQL IDEs

Kyuubi provides a standard JDBC/ODBC interface over thrift that allows various existing BI tools, SQL clients/IDEs to connect with.


Note

Is your favorite tool missing?
Report an feature request [https://kyuubi.apache.org/issue_tracking.html] or help us document it.





	Apache Superset

	Cloudera Hue

	DataGrip

	DBeaver

	PowerBI

	Tableau








            

          

      

      

    

  

  
    
    

    Apache Superset
    

    

    

    

    
 
  

    
      
          
            
  
Apache Superset [https://superset.apache.org/]


Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.






            

          

      

      

    

  

  
    
    

    Cloudera Hue
    

    

    

    

    
 
  

    
      
          
            
  
Cloudera Hue


What is Hue

Hue [https://gethue.com/] is an open source SQL Assistant for Databases & Data Warehouses.



Preparation


Get Kyuubi Started

Get the server Started first before your try Hue with Kyuubi.

Welcome to
  __  __                           __
 /\ \/\ \                         /\ \      __
 \ \ \/'/'  __  __  __  __  __  __\ \ \____/\_\
  \ \ , <  /\ \/\ \/\ \/\ \/\ \/\ \\ \ '__`\/\ \
   \ \ \\`\\ \ \_\ \ \ \_\ \ \ \_\ \\ \ \L\ \ \ \
    \ \_\ \_\/`____ \ \____/\ \____/ \ \_,__/\ \_\
     \/_/\/_/`/___/> \/___/  \/___/   \/___/  \/_/
                /\___/
                \/__/








Run Hue in Docker

Here we demo running Kyuubi on macOS and Hue on Docker for Mac [https://docs.docker.com/docker-for-mac/],
there are several known limitations of network, and you can find
workarounds from here [https://docs.docker.com/docker-for-mac/networking/#known-limitations-use-cases-and-workarounds].


Configuration


	Copy a configuration template from Hue Docker image.




docker run --rm gethue/hue:latest cat /usr/share/hue/desktop/conf/hue.ini > hue.ini






	Modify the hue.ini




[beeswax]
  # Kyuubi 1.1.x support thrift version from 1 to 10
  thrift_version=7
  # change to your username to avoid permissions issue for local test
  auth_username=chengpan

[notebook]
  [[interpreters]]
    [[[sql]]]
      name=SparkSQL
      interface=hiveserver2
      
[spark]
  # Host of the Spark Thrift Server
  # For macOS users, use docker.for.mac.host.internal to access host network
  sql_server_host=docker.for.mac.host.internal

  # Port of the Spark Thrift Server
  sql_server_port=10009
  
# other configurations
...







Start Hue in Docker

docker run -p 8888:8888 -v $PWD/hue.ini:/usr/share/hue/desktop/conf/hue.ini gethue/hue:latest





Go http://localhost:8888/ and follow the guide to create an account.

[image: ../../_images/start.png]

Having fun with Hue and Kyuubi!

[image: ../../_images/spark_sql_docker.png]




For CDH 6.x Users

If you are using CDH 6.x, there is a trick that CDH 6.x blocks Spark in default, you need to modify the configuration to
overwrite the desktop.app_blacklist to remove this restriction.

Config Hue in Cloudera Manager.

[image: ../../_images/cloudera_manager.png]

Refer following configuration and tune it to fit your environment.

[desktop]
 app_blacklist=zookeeper,hbase,impala,search,sqoop,security
 use_new_editor=true
[[interpreters]]
[[[sparksql]]]
  name=Spark SQL
  interface=hiveserver2
  # other interpreters
  ...
[spark]
sql_server_host=kyuubi-server-host
sql_server_port=10009





You need to restart the Hue Service to activate the configuration changes, and then Spark SQL will available in editor list.

[image: ../../_images/editor.png]

Having fun with Hue and Kyuubi!

[image: ../../_images/spark_sql_cdh6.png]





            

          

      

      

    

  

  
    
    

    DataGrip
    

    

    

    

    
 
  

    
      
          
            
  
DataGrip


What is DataGrip

DataGrip [https://www.jetbrains.com/datagrip/] is a multi-engine database environment released by JetBrains, supporting MySQL and PostgreSQL, Microsoft SQL Server and Oracle, Sybase, DB2, SQLite, HyperSQL, Apache Derby, and H2.



Preparation


Get DataGrip And Install

Please go to Download DataGrip [https://www.jetbrains.com/datagrip/download] to get and install an appropriate version for yourself.



Get Kyuubi Started

Get kyuubi server started before you try DataGrip with kyuubi.

For debugging purpose, you can use tail -f or tailf to track the server log.




Configurations


Start DataGrip

After you install DataGrip, just launch it.



Select Database

Substantially, this step is to choose a JDBC Driver type to use later. We can choose Apache Hive to set up a driver for Kyuubi.

[image: select database]



Datasource Driver

You should first download the missing driver files. Just click on the link below, DataGrip will download and install those.

[image: datasource and driver]



Generic JDBC Connection Settings

After install drivers, you should configure the right host and port which you can find in kyuubi server log. By default, we use localhost and 10009 to configure.

Of course, you can fill other configs.

After generic configs, you can use test connection to test.

[image: configuration]




Interacting With Kyuubi Server

Now, you can interact with Kyuubi server.

The left side of the photo is the table, and the right side of the photo is the console.

You can interact through the visual interface or code.

[image: workspace]



The End

There are many other amazing features in both Kyuubi and DataGrip and here is just the tip of the iceberg. The rest is for you to discover.





            

          

      

      

    

  

  
    
    

    DBeaver
    

    

    

    

    
 
  

    
      
          
            
  
DBeaver


What is DBeaver

[image: ../../_images/dbeaver-icon-64x64.png]
DBeaver [https://dbeaver.io/] is a free multi-platform database tool for developers, database administrators, analysts, and all people who need to work with databases.
Supports all popular databases as well as kyuubi JDBC.


See also

DBeaver Wiki





Installation

Please go to Download DBeaver [https://dbeaver.io/download/] page to get and install an appropriate release version for yourself.


New in version 22.1.0(dbeaver): DBeaver officially supports apache kyuubi JDBC driver since 06 Jun 2022 via PR 16567 [https://github.com/dbeaver/dbeaver/issues/16567].





Using DBeaver with Kyuubi

If you have successfully installed dbeaver, just hit the button to launch it.


New Connection

Firstly, we need to create a database connection against a live kyuubi server.
You are able to find the kyuubi jdbc driver since dbeaver 22.1.0, as shown in the following figure.

[image: ../../_images/new_database_connection.png]

Note

We can also choose Apache Hive or Apache Spark to set up a driver for Kyuubi, because they are compatible with the same client.





Configure Connection

Secondly, we configure the JDBC connection settings to format an underlying kyuubi JDBC connection URL string.


Basic Connection Settings

The basic connection setting contains a minimal set of items you need to talk with kyuubi server,


	Host - hostname or IP address that the kyuubi server bound with, default: localhost.


	Port - port that the kyuubi server listening to, default: 10009.


	Database/Schema - database or schema to use, default: default.


	Authentication - identity information, such as user/password, based on the server authentication mechanism.






Session Configurations

Session configuration list is an optional part of kyuubi JDBC URLs, which are very helpful to override some configurations of the kyuubi server at session scope.
The setup page of dbeaver does not contain any text box for such behavior.
However, we can append the semicolon-separated configuration pairs to the Database/Schema filed leading with a number sign(#).
Though it’s a bit weird, but it works.

[image: ../../_images/configure_database_connection.png]
As an example, shown in the picture above, the engine uses 2 gigabytes memory for the driver process of kyuubi engine and will be terminated after idle for 30 seconds.



Connecting in HA mode

Kyuubi supports HA by service discovery over Apache Zookeeper cluster.

[image: ../../_images/configure_database_connection_ha.png]
As an example, shown in the above picture, the Host and Port fields can be used to concat the comma separated zookeeper peers,
while the serviceDiscoveryMode and zooKeeperNamespace are appended to the Database/Schema field.




Test Connection

It is not necessary but recommended to click Test Connection to verify the connection is set correctly.
If something wrong happens at the client side or server side, we can debug ahead with the error message.



SQL Operations

Now, we can use the SQL editor to write queries to interact with Kyuubi server through the connection.

DESC NAMESPACE DEFAULT;





CREATE TABLE spark_catalog.`default`.SRC(KEY INT, VALUE STRING) USING PARQUET;
INSERT INTO TABLE spark_catalog.`default`.SRC VALUES (11215016, 'Kent Yao');





SELECT KEY % 10 AS ID, SUBSTRING(VALUE, 1, 4) AS NAME FROM spark_catalog.`default`.SRC;





[image: ../../_images/metadata.png]
DROP TABLE spark_catalog.`default`.SRC;








Client Authentication

For kerberized kyuubi clusters, please refer to Kerberos Authentication for more information.





            

          

      

      

    

  

  
    
    

    PowerBI
    

    

    

    

    
 
  

    
      
          
            
  
PowerBI [https://powerbi.microsoft.com/en-us/]


Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.






            

          

      

      

    

  

  
    
    

    Tableau
    

    

    

    

    
 
  

    
      
          
            
  
Tableau [https://www.tableau.com/]


Warning

The document you are visiting now is incomplete, please help kyuubi community to fix it if appropriate for you.






            

          

      

      

    

  

  
    
    

    ODBC Drivers
    

    

    

    

    
 
  

    
      
          
            
  
ODBC Drivers







            

          

      

      

    

  

  
    
    

    Thrift APIs
    

    

    

    

    
 
  

    
      
          
            
  
Thrift APIs







            

          

      

      

    

  

  
    
    

    RESTful APIs and Clients
    

    

    

    

    
 
  

    
      
          
            
  
RESTful APIs and Clients



	REST API v1
	Session Resource

	Operation Resource

	Batch Resource

	Admin Resource

	REST Objects












            

          

      

      

    

  

  
    
    

    REST API v1
    

    

    

    

    
 
  

    
      
          
            
  
REST API v1

Note that: now the api version is v1 and the base uri is /api/v1.


Session Resource


GET /sessions

Get the list of all live sessions


Response Body




	Name
	Description
	Type





	identifier
	The session identifier
	String



	user
	The user name that created the session
	String



	ipAddr
	The client IP address that created the session
	String



	conf
	The configuration of the session
	Map



	createTime
	The session that created at this timestamp
	Long



	duration
	The interval that last access time subtract created time
	Long



	idleTime
	The interval of no operation
	Long







GET /sessions/${sessionHandle}

Get a session event


Response Body

The KyuubiSessionEvent.




GET /sessions/${sessionHandle}/info/${infoType}

Get an information detail of a session


Request Parameters




	Name
	Description
	Type





	infoType
	The id of Hive Thrift GetInfo
	Int






Response Body




	Name
	Description
	Type





	infoType
	The type of session information
	String



	infoValue
	The value of session information
	String







GET /sessions/count

Get the current open session count


Response Body




	Name
	Description
	Type





	openSessionCount
	The count of opening session
	Int







GET /sessions/execPool/statistic

Get statistic info of background executors


Response Body




	Name
	Description
	Type





	execPoolSize
	The current number of threads in the pool
	Int



	execPoolActiveCount
	The approximate number of threads that are actively executing tasks
	Int







POST /sessions

Create a session


Request Parameters




	Name
	Description
	Type





	configs
	The configuration of the session
	Map






Response Body




	Name
	Description
	Type





	identifier
	The session handle identifier
	String



	kyuubiInstance
	The Kyuubi instance that holds the session and to call for the following operations in the session
	String







DELETE /sessions/${sessionHandle}

Close a session.



POST /sessions/${sessionHandle}/operations/statement

Create an operation with EXECUTE_STATEMENT type


Request Body




	Name
	Description
	Type





	statement
	The SQL statement that you execute
	String



	runAsync
	The flag indicates whether the query runs synchronously or not
	Boolean



	queryTimeout
	The interval of query time out
	Long



	confOverlay
	The conf to overlay only for current operation
	Map of key=val






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/typeInfo

Create an operation with GET_TYPE_INFO type


Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/catalogs

Create an operation with GET_CATALOGS type


Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/schemas

Create an operation with GET_SCHEMAS type


Request Body




	Name
	Description
	Type





	catalogName
	The catalog name
	String



	schemaName
	The schema name
	String






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/tables


Request Body




	Name
	Description
	Type





	catalogName
	The catalog name
	String



	schemaName
	The schema name
	String



	tableName
	The table name
	String



	tableTypes
	The type of table, for example: TABLE or VIEW
	String






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/tableTypes


Request Parameters



Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/columns


Request Body




	Name
	Description
	Type





	catalogName
	The catalog name
	String



	schemaName
	The schema name
	String



	tableName
	The table name
	String



	columnName
	The column name
	String






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/functions


Request Body




	Name
	Description
	Type





	catalogName
	The catalog name
	String



	schemaName
	The schema name
	String



	functionName
	The function name
	String






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/primaryKeys


Request Parameters




	Name
	Description
	Type





	catalogName
	The catalog name
	String



	schemaName
	The schema name
	String



	tableName
	The table name
	String






Response Body




	Name
	Description
	Type





	identifier
	The identifier of operation
	String







POST /sessions/${sessionHandle}/operations/crossReference




	Name
	Description
	Type





	identifier
	The identifier of operation
	String





Request Body




	Name
	Description
	Type





	primaryCatalog
	The primary catalog name
	String



	p